48 research outputs found

    The role of neutrophils in chorioamnionitis

    Get PDF
    Chorioamnionitis, commonly referred to as intrauterine infection or inflammation, is pathologically defined by neutrophil infiltration and inflammation at the maternal-fetal interface. Chorioamnionitis is the common complication during late pregnancy, which lead to a series of serious consequences, such as preterm labor, preterm premature rupture of the fetal membranes, and fetal inflammatory response syndrome. During infection, a large number of neutrophils migrate to the chorio-decidua in response to chemokines. Although neutrophils, a crucial part of innate immune cells, have strong anti-inflammatory properties, over-activating them can harm the body while also eliminating pathogens. This review concentrated on the latest studies on chorioamnionitis-related consequences as well as the function and malfunction of neutrophils. The release of neutrophil extracellular traps, production of reactive oxygen species, and degranulation from neutrophils during intrauterine infection, as well as their pathological roles in complications related to chorioamnionitis, were discussed in detail, offering fresh perspectives on the treatment of chorioamnionitis

    Integrating aerial and street view images for urban land use classification

    Get PDF
    Urban land use is key to rational urban planning and management. Traditional land use classification methods rely heavily on domain experts, which is both expensive and inefficient. In this paper, deep neural network-based approaches are presented to label urban land use at pixel level using high-resolution aerial images and ground-level street view images. We use a deep neural network to extract semantic features from sparsely distributed street view images and interpolate them in the spatial domain to match the spatial resolution of the aerial images, which are then fused together through a deep neural network for classifying land use categories. Our methods are tested on a large publicly available aerial and street view images dataset of New York City, and the results show that using aerial images alone can achieve relatively high classification accuracy, the ground-level street view images contain useful information for urban land use classification, and fusing street image features with aerial images can improve classification accuracy. Moreover, we present experimental studies to show that street view images add more values when the resolutions of the aerial images are lower, and we also present case studies to illustrate how street view images provide useful auxiliary information to aerial images to boost performances

    Indoor topological localization using a visual landmark sequence

    Get PDF
    This paper presents a novel indoor topological localization method based on mobile phone videos. Conventional methods suffer from indoor dynamic environmental changes and scene ambiguity. The proposed Visual Landmark Sequence-based Indoor Localization (VLSIL) method is capable of addressing problems by taking steady indoor objects as landmarks. Unlike many feature or appearance matching-based localization methods, our method utilizes highly abstracted landmark sematic information to represent locations and thus is invariant to illumination changes, temporal variations, and occlusions. We match consistently detected landmarks against the topological map based on the occurrence order in the videos. The proposed approach contains two components: a convolutional neural network (CNN)-based landmark detector and a topological matching algorithm. The proposed detector is capable of reliably and accurately detecting landmarks. The other part is the matching algorithm built on the second order hidden Markov model and it can successfully handle the environmental ambiguity by fusing sematic and connectivity information of landmarks. To evaluate the method, we conduct extensive experiments on the real world dataset collected in two indoor environments, and the results show that our deep neural network-based indoor landmark detector accurately detects all landmarks and is expected to be utilized in similar environments without retraining and that VLSIL can effectively localize indoor landmarks

    Homogeneous Acetylation of Cellulose at Relatively High Concentrations in an Ionic Liquid

    No full text
    At relatively high cellulose mass concentrations (8%, 10%, and 12%), homogeneous acetylation of cellulose was carried out in an ionic liquid, 1-allyl-3-methylimidazolium chloride (AmimCl). Without using any catalyst, cellulose acetates (CAs) with the degree of substitution (DS) in a range from 0.4 to 3.0 were synthesized in one-step. The effects of reaction time, temperature and molar ratio of acetic anhydride/anhydroglucose unit (AGU) in cellulose on DS value of CAs were investigated. The synthesized CAs were characterized by means of FT-IR, NMR, and solubility, mechanical and thermal tests. After the acetylation, the used ionic liquid AmimCl was easily recycled and reused. This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications

    Homogeneous Acetylation of Cellulose at Relatively High Concentrations in an Ionic Liquid

    No full text
    At relatively high cellulose mass concentrations (8%, 10%, and 12%), homogeneous acetylation of cellulose was carried out in an ionic liquid, 1-allyl-3-methylimidazolium chloride (AmimCl). Without using any catalyst, cellulose acetates (CAs) with the degree of substitution (DS) in a range from 0.4 to 3.0 were synthesized in one-step. The effects of reaction time, temperature and molar ratio of acetic anhydride/anhydroglucose unit (AGU) in cellulose on DS value of CAs were investigated. The synthesized CAs were characterized by means of FT-IR, NMR, and solubility, mechanical and thermal tests. After the acetylation, the used ionic liquid AminiCl was easily recycled and reused. This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications

    Structure and Properties of Novel Regenerated Cellulose Films Prepared from Cornhusk Cellulose in Room Temperature Ionic Liquids

    No full text
    Cornhusk cellulose was regenerated using the ionic liquids viz., 1-allyl-3-methylimidazolium chloride (AmimCl) and 1-ethyl-3-methylimidazolium acetate (Emi-mAc). The cast cellulose films were characterized by FTIR, WAXD and SEM techniques. Their mechanical properties were also studied. These Studies indicated that AmimCl and EmimAc are good solvents for the regeneration of cornhusk cellulose. The regenerated cornhusk cellulose (RCC) was found to be cellulose (II) with dense structure. The films cast from AmimCl exhibited good mechanical properties; the tensile modulus and strength were as high as 6 GPa and 120 MPa respectively, whereas these values for those films cast using EmimAc were found to be 4.1 GPa and 47 MPa respectively. Further, it was observed that after regeneration, the solvents could be effectively recycled. Thus a novel nonpolluting process of forming RCC films from agricultural waste was developed. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 547-554, 201

    The Phylogeny, Metabolic Potentials, and Environmental Adaptation of an Anaerobe, <i>Abyssisolibacter</i> sp. M8S5, Isolated from Cold Seep Sediments of the South China Sea

    No full text
    Bacillota are widely distributed in various environments, owing to their versatile metabolic capabilities and remarkable adaptation strategies. Recent studies reported that Bacillota species were highly enriched in cold seep sediments, but their metabolic capabilities, ecological functions, and adaption mechanisms in the cold seep habitats remained obscure. In this study, we conducted a systematic analysis of the complete genome of a novel Bacillota bacterium strain M8S5, which we isolated from cold seep sediments of the South China Sea at a depth of 1151 m. Phylogenetically, strain M8S5 was affiliated with the genus Abyssisolibacter within the phylum Bacillota. Metabolically, M8S5 is predicted to utilize various carbon and nitrogen sources, including chitin, cellulose, peptide/oligopeptide, amino acids, ethanolamine, and spermidine/putrescine. The pathways of histidine and proline biosynthesis were largely incomplete in strain M8S5, implying that its survival strictly depends on histidine- and proline-related organic matter enriched in the cold seep ecosystems. On the other hand, strain M8S5 contained the genes encoding a variety of extracellular peptidases, e.g., the S8, S11, and C25 families, suggesting its capabilities for extracellular protein degradation. Moreover, we identified a series of anaerobic respiratory genes, such as glycine reductase genes, in strain M8S5, which may allow it to survive in the anaerobic sediments of cold seep environments. Many genes associated with osmoprotectants (e.g., glycine betaine, proline, and trehalose), transporters, molecular chaperones, and reactive oxygen species-scavenging proteins as well as spore formation may contribute to its high-pressure and low-temperature adaptations. These findings regarding the versatile metabolic potentials and multiple adaptation strategies of strain M8S5 will expand our understanding of the Bacillota species in cold seep sediments and their potential roles in the biogeochemical cycling of deep marine ecosystems
    corecore