113 research outputs found

    Genetic variants of DNA repair genes predict the survival of patients with esophageal squamous cell cancer receiving platinum-based adjuvant chemotherapy

    Get PDF
    Additional file 2: Table S2. Stratified univariate analysis of DFS and OS between LG* and HG* in Chinese ESCC patients

    Deciphering the spatiotemporal trade-offs and synergies between ecosystem services and their socio-ecological drivers in the plain river network area

    Get PDF
    Understanding changes in ecosystem services (ESs) and quantitatively identifying the drivers that influence these changes are essential for achieving sustainable ecosystem development. In this study, multiple data sources and techniques, including meteorological data, land use/cover data, soil data, the InVEST model, and ArcGIS, were used to analyze the spatiotemporal variation characteristics of carbon storage, habitat quality, soil retention, water yield, and crop product supply in Xinghua City from 2000 to 2015. Additionally, we explored the causes of these changes and the interrelationships among these ESs. The results showed that: (1) During the study period, carbon storage and habitat quality declined, water yield fluctuated and increased, and soil retention had small interannual variations. The supply capacity of crop products first increased rapidly and then stabilized. (2) ESs were influenced by multiple drivers, with altitude having the strongest explanatory power for habitat quality and soil retention, and food production having the strongest explanatory power for crop product supply. (3) Relationships between different ESs were variable and changed over time. This study could enrich the understanding of spatial and temporal changes and drivers of ESs in the plain river network area, which has important implications for future land use planning and sustainable development of ESs

    Effect of Water on Mechanical Properties and Fracture Evolution of Fissured Sandstone under Uniaxial Compression: Insights from Experimental Investigation

    Get PDF
    AbstractPreexisting discontinuities and the water affect the fracture evolution process as well as the rock stability the most extensively. To ensure operational safety, the effects of water on the mechanical properties of fissured rock masses must be understood well. In this study, a series of uniaxial compressive tests is conducted on both dry and saturated fissured specimens with varying fissure angles. Real-time acoustic emission and digital image correlation are applied to monitor the fracture evolution process. The failure mode is investigated by identifying the types of cracks present in the ultimate failure forms of the fissured specimens. The results indicate that (1) the saturated and dry specimens exhibit significantly different strengths and stiffnesses, wherein the saturated specimens exhibit weaker strength by 25.64%–32.59% and a lower elastic modulus by 20.30%–29.22%. (2) The fissure angle and water jointly control the failure mode of fissured sandstone. (3) The observed fracture evolution processes can be classified into six distinct stages to facilitate the understanding of rock failure mechanisms. (4) The presence of water accelerates the nucleation of microcracks at the tips of the prefabricated fissures, enlarges the range of microcrack coalescence, and facilitates the emergence of unstable cracks owing to an increase in pore water pressure and a decrease in the friction resistance of crack surfaces

    GW Ori : circumtriple rings and planets

    Get PDF
    GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at 100 au100\, \rm au and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations and 3D hydrodynamic simulations. We find that for observationally motivated parameters of protoplanetary discs, the disc does not break due to the torque from the star system. We suggest that the presence of a massive planet (or planets) in the disc separates the inner and outer discs. We conclude that the disc breaking in GW Ori is likely caused by undetected planets – the first planet(s) in a circumtriple orbit

    GW Ori: Circumtriple Rings and Planets

    Full text link
    GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at 100 au and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations and 3D hydrodynamic simulations. We find that for observationally motivated parameters of protoplanetary discs, the disc does not break due to the torque from the star system. We suggest that the presence of a massive planet (or planets) in the disc separates the inner and outer discs. We conclude that the disc breaking in GW Ori is likely caused by undetected planets – the first planet(s) in a circumtriple orbit

    The role of macrophages in gastric cancer

    Get PDF
    As one of the deadliest cancers of the gastrointestinal tract, there has been limited improvement in long-term survival rates for gastric cancer (GC) in recent decades. The poor prognosis is attributed to difficulties in early detection, minimal opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are among the most abundant infiltrating immune cells in the GC stroma. These cells engage in crosstalk with cancer cells, adipocytes and other stromal cells to regulate metabolic, inflammatory and immune status, generating an immunosuppressive tumour microenvironment (TME) and ultimately promoting tumour initiation and progression. In this review, we summarise recent advances in our understanding of the origin of macrophages and their types and polarisation in cancer and provide an overview of the role of macrophages in GC carcinogenesis and development and their interaction with the GC immune microenvironment and flora. In addition, we explore the role of macrophages in preclinical and clinical trials on drug resistance and in treatment of GC to assess their potential therapeutic value in this disease
    • …
    corecore