73 research outputs found

    Weighted gene co-expression network analysis and CIBERSORT screening of key genes related to m6A methylation in Hirschsprung’s disease

    Get PDF
    Hirschsprung’s disease (HSCR) is a neural crest disease that results from the failure of enteric neural crest cells (ENCCs) to migrate to the corresponding intestinal segment. The RET gene, which regulates enteric neural crest cell proliferation and migration, is considered one of the main risk factors for HSCR and is commonly used to construct HSCR mouse models. The epigenetic mechanism of m6A modification is involved in HSCR. In this study, we analyzed the GEO database (GSE103070) for differentially expressed genes (DEGs) and focused on m6A–related genes. Comparing the RNA-seq data of Wide Type and RET Null, a total of 326 DEGs were identified, of which 245 genes were associated with m6A. According to the CIBERSORT analysis, the proportion of Memory B-cell in RET Null was significantly higher than that of Wide Type. Venn diagram analysis was used to identify key genes in the selected memory B-cell modules and DEGs associated with m6A. Enrichment analysis showed that seven genes were mainly involved in focal adhesion, HIV infection, actin cytoskeleton organization and regulation of binding. These findings could provide a theoretical basis for molecular mechanism studies of HSCR

    Dual curvature measures for log-concave functions

    Full text link
    We introduce dual curvature measures for log-concave functions, which in the case of characteristic functions recover the dual curvature measures for convex bodies introduced by Huang-Lutwak-Yang-Zhang in 2016. Variational formulas are shown. The associated Minkowski problem for these dual curvature measures is considered and sufficient conditions in the symmetric setting are demonstrated

    Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1

    Get PDF
    Functional pancreatic neuroendocrine tumours (PNETs) are mainly represented by insulinoma, which secrete insulin independent of glucose and cause hypoglycaemia. The major genetic alterations in sporadic insulinomas are still unknown. Here we identify recurrent somatic T372R mutations in YY1 by whole exome sequencing of 10 sporadic insulinomas. Further screening in 103 additional insulinomas reveals this hotspot mutation in 30% (34/113) of all tumours. T372R mutation alters the expression of YY1 target genes in insulinomas. Clinically, the T372R mutation is associated with the later onset of tumours. Genotyping of YY1, a target of mTOR inhibitors, may contribute to medical treatment of insulinomas. Our findings highlight the importance of YY1 in pancreatic ÎČ-cells and may provide therapeutic targets for PNETs

    Spatiotemporal dynamic of subtropical forest carbon storage and its resistance and resilience to drought in China

    Get PDF
    Subtropical forests are rich in vegetation and have high photosynthetic capacity. China is an important area for the distribution of subtropical forests, evergreen broadleaf forests (EBFs) and evergreen needleleaf forests (ENFs) are two typical vegetation types in subtropical China. Forest carbon storage is an important indicator for measuring the basic characteristics of forest ecosystems and is of great significance for maintaining the global carbon balance. Drought can affect forest activity and may even lead to forest death and the stability characteristics of different forest ecosystems varied after drought events. Therefore, this study used meteorological data to simulate the standardized precipitation evapotranspiration index (SPEI) and the Biome-BGC model to simulate two types of forest carbon storage to quantify the resistance and resilience of EBF and ENF to drought in the subtropical region of China. The results show that: 1) from 1952 to 2019, the interannual drought in subtropical China showed an increasing trend, with five extreme droughts recorded, of which 2011 was the most severe one; 2) the simulated average carbon storage of the EBF and ENF during 1985-2019 were 130.58 t·hm-2 and 78.49 t·hm-2, respectively. The regions with higher carbon storage of EBF were mainly concentrated in central and southeastern subtropics, where those of ENF mainly distributed in the western subtropic; 3) The median of resistance of EBF was three times higher than that of ENF, indicating the EBF have stronger resistance to extreme drought than ENF. Moreover, the resilience of two typical forest to 2011 extreme drought and the continuous drought events during 2009 - 2011 were similar. The results provided a scientific basis for the response of subtropical forests to drought, and indicating that improve stand quality or expand the plantation of EBF may enhance the resistance to drought in subtropical China, which provided certain reference for forest protection and management under the increasing frequency of drought events in the future

    Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Chemoimmunotherapy for esophageal squamous cell carcinoma—Summary and discussion of recent clinical trials

    No full text
    Abstract As a kind of carcinoma with increasing morbidity, poor prognosis, and high mortality, esophageal squamous cell carcinoma (ESCC) is challenging for clinical management. Chemotherapy has been the standard treatment for ESCC over decades, while its clinical outcomes remain unsatisfying. And the regimen that combine standard chemotherapy with targeted therapy also demonstrates little effect. However, the advent of immune checkpoint inhibitors (ICI) proved to be a game changer in cancer treatment. Recent clinical trials had sprung up to evaluate the combined effect of ICI and chemotherapy regarding first‐line ESCC treatment. What's more, researchers attempt to explore the possibility to implement ICI monotherapy regarding second‐line ESCC treatment. In conclusion, most of the first‐line trails present inspiring achievement, while ICI monotherapy indicates little improvement for ESCC treatment. To point out the heterogenicity that could be the potential reasons biasing the pooled results, the differences of PD‐L1 immunohistochemistry (IHC) assays, geographic regions, chemotherapy regimens, and sex disparity among these trails are discussed respectively. In addition, the adverse events occurred during the trails are summarized, which confirm the safety of immunotherapy and chemoimmunotherapy. The article comprehensively reviews the representative explorations of using chemoimmunotherapy strategies in ESCC, as well as the deficiencies among them. Moreover, we highlight some feasible approaches. It will be beneficial for conducting more precise clinical trials on chemoimmunotherapy for ESCC in the future, including the use of more appropriate PD‐L1 IHC assays, careful consideration of the heterogeneity of the enrolled population and the optimal combination of chemotherapy and ICI

    Correction: Staining Pattern Classification of Antinuclear Autoantibodies Based on Block Segmentation in Indirect Immunofluorescence Images.

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0113132.]

    DataSheet1_Weighted gene co-expression network analysis and CIBERSORT screening of key genes related to m6A methylation in Hirschsprung’s disease.XLSX

    No full text
    Hirschsprung’s disease (HSCR) is a neural crest disease that results from the failure of enteric neural crest cells (ENCCs) to migrate to the corresponding intestinal segment. The RET gene, which regulates enteric neural crest cell proliferation and migration, is considered one of the main risk factors for HSCR and is commonly used to construct HSCR mouse models. The epigenetic mechanism of m6A modification is involved in HSCR. In this study, we analyzed the GEO database (GSE103070) for differentially expressed genes (DEGs) and focused on m6A–related genes. Comparing the RNA-seq data of Wide Type and RET Null, a total of 326 DEGs were identified, of which 245 genes were associated with m6A. According to the CIBERSORT analysis, the proportion of Memory B-cell in RET Null was significantly higher than that of Wide Type. Venn diagram analysis was used to identify key genes in the selected memory B-cell modules and DEGs associated with m6A. Enrichment analysis showed that seven genes were mainly involved in focal adhesion, HIV infection, actin cytoskeleton organization and regulation of binding. These findings could provide a theoretical basis for molecular mechanism studies of HSCR.</p
    • 

    corecore