6,924 research outputs found
En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration
The fission-fusion reaction mechanism was proposed in order to generate
extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid
neutron capture nucleosynthesis process (r-process). The production of such
isotopes and the measurement of their nuclear properties would fundamentally
help to increase the understanding of the nucleosynthesis of the heaviest
elements in the universe. Major prerequisite for the realization of this new
reaction scheme is the development of laser-based acceleration of ultra-dense
heavy ion bunches in the mass range of A = 200 and above. In this paper, we
review the status of laser-driven heavy ion acceleration in the light of the
fission-fusion reaction mechanism. We present results from our latest
experiment on heavy ion acceleration, including a new milestone with
laser-accelerated heavy ion energies exceeding 5 MeV/u
Novel Features Arising in the Maximally Random Jammed Packings of Superballs
Dense random packings of hard particles are useful models of granular media
and are closely related to the structure of nonequilibrium low-temperature
amorphous phases of matter. Most work has been done for random jammed packings
of spheres, and it is only recently that corresponding packings of nonspherical
particles (e.g., ellipsoids) have received attention. Here we report a study of
the maximally random jammed (MRJ) packings of binary superdisks and
monodispersed superballs whose shapes are defined by |x_1|^2p+...+|x_2|^2p<=1
with d = 2 and 3, respectively, where p is the deformation parameter with
values in the interval (0, infinity). We find that the MRJ densities of such
packings increase dramatically and nonanalytically as one moves away from the
circular-disk and sphere point. Moreover, the disordered packings are
hypostatic and the local arrangements of particles are necessarily nontrivially
correlated to achieve jamming. We term such correlated structures "nongeneric".
The degree of "nongenericity" of the packings is quantitatively characterized
by determining the fraction of local coordination structures in which the
central particles have fewer contacting neighbors than average. We also show
that such seemingly special packing configurations are counterintuitively not
rare. As the anisotropy of the particles increases, the fraction of rattlers
decreases while the minimal orientational order increases. These novel
characteristics result from the unique rotational symmetry breaking manner of
the particles.Comment: 20 pages, 8 figure
Dense Packings of Superdisks and the Role of Symmetry
We construct the densest known two-dimensional packings of superdisks in the
plane whose shapes are defined by |x^(2p) + y^(2p)| <= 1, which contains both
convex-shaped particles (p > 0.5, with the circular-disk case p = 1) and
concave-shaped particles (0 < p < 0.5). The packings of the convex cases with p
1 generated by a recently developed event-driven molecular dynamics (MD)
simulation algorithm [Donev, Torquato and Stillinger, J. Comput. Phys. 202
(2005) 737] suggest exact constructions of the densest known packings. We find
that the packing density (covering fraction of the particles) increases
dramatically as the particle shape moves away from the "circular-disk" point (p
= 1). In particular, we find that the maximal packing densities of superdisks
for certain p 6 = 1 are achieved by one of the two families of Bravais lattice
packings, which provides additional numerical evidence for Minkowski's
conjecture concerning the critical determinant of the region occupied by a
superdisk. Moreover, our analysis on the generated packings reveals that the
broken rotational symmetry of superdisks influences the packing characteristics
in a non-trivial way. We also propose an analytical method to construct dense
packings of concave superdisks based on our observations of the structural
properties of packings of convex superdisks.Comment: 15 pages, 8 figure
Geometrical Ambiguity of Pair Statistics. I. Point Configurations
Point configurations have been widely used as model systems in condensed
matter physics, materials science and biology. Statistical descriptors such as
the -body distribution function is usually employed to characterize
the point configurations, among which the most extensively used is the pair
distribution function . An intriguing inverse problem of practical
importance that has been receiving considerable attention is the degree to
which a point configuration can be reconstructed from the pair distribution
function of a target configuration. Although it is known that the pair-distance
information contained in is in general insufficient to uniquely determine
a point configuration, this concept does not seem to be widely appreciated and
general claims of uniqueness of the reconstructions using pair information have
been made based on numerical studies. In this paper, we introduce the idea of
the distance space, called the space. The pair distances of a
specific point configuration are then represented by a single point in the
space. We derive the conditions on the pair distances that can be
associated with a point configuration, which are equivalent to the
realizability conditions of the pair distribution function . Moreover, we
derive the conditions on the pair distances that can be assembled into distinct
configurations. These conditions define a bounded region in the
space. By explicitly constructing a variety of degenerate point configurations
using the space, we show that pair information is indeed
insufficient to uniquely determine the configuration in general. We also
discuss several important problems in statistical physics based on the
space.Comment: 28 pages, 8 figure
Effects of Ru Substitution on Dimensionality and Electron Correlations in Ba(Fe_{1-x}Ru_x)_2As_2
We report a systematic angle-resolved photoemission spectroscopy study on
Ba(FeRu)As for a wide range of Ru concentrations (0.15
\emph{x} 0.74). We observed a crossover from two-dimension to
three-dimension for some of the hole-like Fermi surfaces with Ru substitution
and a large reduction in the mass renormalization close to optimal doping.
These results suggest that isovalent Ru substitution has remarkable effects on
the low-energy electron excitations, which are important for the evolution of
superconductivity and antiferromagnetism in this system.Comment: 4 pages, 4 figure
DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices
© 2016 IEEE. Breakthroughs from the field of deep learning are radically changing how sensor data are interpreted to extract the high-level information needed by mobile apps. It is critical that the gains in inference accuracy that deep models afford become embedded in future generations of mobile apps. In this work, we present the design and implementation of DeepX, a software accelerator for deep learning execution. DeepX signif- icantly lowers the device resources (viz. memory, computation, energy) required by deep learning that currently act as a severe bottleneck to mobile adoption. The foundation of DeepX is a pair of resource control algorithms, designed for the inference stage of deep learning, that: (1) decompose monolithic deep model network architectures into unit- blocks of various types, that are then more efficiently executed by heterogeneous local device processors (e.g., GPUs, CPUs); and (2), perform principled resource scaling that adjusts the architecture of deep models to shape the overhead each unit-blocks introduces. Experiments show, DeepX can allow even large-scale deep learning models to execute efficently on modern mobile processors and significantly outperform existing solutions, such as cloud-based offloading
Failure analysis of EB03 crankshaft
Study on the fracture specimen of EB03 crankshaft which produced by a crankshaft company. It is found that there is a phenomenon of high temperature oxidation on the surface of EB03 fractured crankshaft’s journal by the macroscopic analysis of the fracture of the crankshaft. And there are a lot of sintered metal particles on the surface of the neck journal. These phenomena indicate that the axle diameter of the connecting rod is gradually locked in the process of operation, during this process, a lot of heat is generated with the holding of the tile and causes the phenomenon of burning and melting. It is found that the graphite has different degrees of deformation by observing the graphite morphology on the surface of the neck journal
Entropy on Spin Factors
Recently it has been demonstrated that the Shannon entropy or the von Neuman
entropy are the only entropy functions that generate a local Bregman
divergences as long as the state space has rank 3 or higher. In this paper we
will study the properties of Bregman divergences for convex bodies of rank 2.
The two most important convex bodies of rank 2 can be identified with the bit
and the qubit. We demonstrate that if a convex body of rank 2 has a Bregman
divergence that satisfies sufficiency then the convex body is spectral and if
the Bregman divergence is monotone then the convex body has the shape of a
ball. A ball can be represented as the state space of a spin factor, which is
the most simple type of Jordan algebra. We also study the existence of recovery
maps for Bregman divergences on spin factors. In general the convex bodies of
rank 2 appear as faces of state spaces of higher rank. Therefore our results
give strong restrictions on which convex bodies could be the state space of a
physical system with a well-behaved entropy function.Comment: 30 pages, 6 figure
- …