6,924 research outputs found

    En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration

    Full text link
    The fission-fusion reaction mechanism was proposed in order to generate extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid neutron capture nucleosynthesis process (r-process). The production of such isotopes and the measurement of their nuclear properties would fundamentally help to increase the understanding of the nucleosynthesis of the heaviest elements in the universe. Major prerequisite for the realization of this new reaction scheme is the development of laser-based acceleration of ultra-dense heavy ion bunches in the mass range of A = 200 and above. In this paper, we review the status of laser-driven heavy ion acceleration in the light of the fission-fusion reaction mechanism. We present results from our latest experiment on heavy ion acceleration, including a new milestone with laser-accelerated heavy ion energies exceeding 5 MeV/u

    Novel Features Arising in the Maximally Random Jammed Packings of Superballs

    Full text link
    Dense random packings of hard particles are useful models of granular media and are closely related to the structure of nonequilibrium low-temperature amorphous phases of matter. Most work has been done for random jammed packings of spheres, and it is only recently that corresponding packings of nonspherical particles (e.g., ellipsoids) have received attention. Here we report a study of the maximally random jammed (MRJ) packings of binary superdisks and monodispersed superballs whose shapes are defined by |x_1|^2p+...+|x_2|^2p<=1 with d = 2 and 3, respectively, where p is the deformation parameter with values in the interval (0, infinity). We find that the MRJ densities of such packings increase dramatically and nonanalytically as one moves away from the circular-disk and sphere point. Moreover, the disordered packings are hypostatic and the local arrangements of particles are necessarily nontrivially correlated to achieve jamming. We term such correlated structures "nongeneric". The degree of "nongenericity" of the packings is quantitatively characterized by determining the fraction of local coordination structures in which the central particles have fewer contacting neighbors than average. We also show that such seemingly special packing configurations are counterintuitively not rare. As the anisotropy of the particles increases, the fraction of rattlers decreases while the minimal orientational order increases. These novel characteristics result from the unique rotational symmetry breaking manner of the particles.Comment: 20 pages, 8 figure

    Dense Packings of Superdisks and the Role of Symmetry

    Full text link
    We construct the densest known two-dimensional packings of superdisks in the plane whose shapes are defined by |x^(2p) + y^(2p)| <= 1, which contains both convex-shaped particles (p > 0.5, with the circular-disk case p = 1) and concave-shaped particles (0 < p < 0.5). The packings of the convex cases with p 1 generated by a recently developed event-driven molecular dynamics (MD) simulation algorithm [Donev, Torquato and Stillinger, J. Comput. Phys. 202 (2005) 737] suggest exact constructions of the densest known packings. We find that the packing density (covering fraction of the particles) increases dramatically as the particle shape moves away from the "circular-disk" point (p = 1). In particular, we find that the maximal packing densities of superdisks for certain p 6 = 1 are achieved by one of the two families of Bravais lattice packings, which provides additional numerical evidence for Minkowski's conjecture concerning the critical determinant of the region occupied by a superdisk. Moreover, our analysis on the generated packings reveals that the broken rotational symmetry of superdisks influences the packing characteristics in a non-trivial way. We also propose an analytical method to construct dense packings of concave superdisks based on our observations of the structural properties of packings of convex superdisks.Comment: 15 pages, 8 figure

    Geometrical Ambiguity of Pair Statistics. I. Point Configurations

    Full text link
    Point configurations have been widely used as model systems in condensed matter physics, materials science and biology. Statistical descriptors such as the nn-body distribution function gng_n is usually employed to characterize the point configurations, among which the most extensively used is the pair distribution function g2g_2. An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g2g_2 is in general insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we introduce the idea of the distance space, called the D\mathbb{D} space. The pair distances of a specific point configuration are then represented by a single point in the D\mathbb{D} space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g2g_2. Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations. These conditions define a bounded region in the D\mathbb{D} space. By explicitly constructing a variety of degenerate point configurations using the D\mathbb{D} space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D\mathbb{D} space.Comment: 28 pages, 8 figure

    Effects of Ru Substitution on Dimensionality and Electron Correlations in Ba(Fe_{1-x}Ru_x)_2As_2

    Full text link
    We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe1x_{1-x}Rux_x)2_2As2_2 for a wide range of Ru concentrations (0.15 \leq \emph{x} \leq 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.Comment: 4 pages, 4 figure

    DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices

    Get PDF
    © 2016 IEEE. Breakthroughs from the field of deep learning are radically changing how sensor data are interpreted to extract the high-level information needed by mobile apps. It is critical that the gains in inference accuracy that deep models afford become embedded in future generations of mobile apps. In this work, we present the design and implementation of DeepX, a software accelerator for deep learning execution. DeepX signif- icantly lowers the device resources (viz. memory, computation, energy) required by deep learning that currently act as a severe bottleneck to mobile adoption. The foundation of DeepX is a pair of resource control algorithms, designed for the inference stage of deep learning, that: (1) decompose monolithic deep model network architectures into unit- blocks of various types, that are then more efficiently executed by heterogeneous local device processors (e.g., GPUs, CPUs); and (2), perform principled resource scaling that adjusts the architecture of deep models to shape the overhead each unit-blocks introduces. Experiments show, DeepX can allow even large-scale deep learning models to execute efficently on modern mobile processors and significantly outperform existing solutions, such as cloud-based offloading

    Failure analysis of EB03 crankshaft

    Get PDF
    Study on the fracture specimen of EB03 crankshaft which produced by a crankshaft company. It is found that there is a phenomenon of high temperature oxidation on the surface of EB03 fractured crankshaft’s journal by the macroscopic analysis of the fracture of the crankshaft. And there are a lot of sintered metal particles on the surface of the neck journal. These phenomena indicate that the axle diameter of the connecting rod is gradually locked in the process of operation, during this process, a lot of heat is generated with the holding of the tile and causes the phenomenon of burning and melting. It is found that the graphite has different degrees of deformation by observing the graphite morphology on the surface of the neck journal

    Entropy on Spin Factors

    Full text link
    Recently it has been demonstrated that the Shannon entropy or the von Neuman entropy are the only entropy functions that generate a local Bregman divergences as long as the state space has rank 3 or higher. In this paper we will study the properties of Bregman divergences for convex bodies of rank 2. The two most important convex bodies of rank 2 can be identified with the bit and the qubit. We demonstrate that if a convex body of rank 2 has a Bregman divergence that satisfies sufficiency then the convex body is spectral and if the Bregman divergence is monotone then the convex body has the shape of a ball. A ball can be represented as the state space of a spin factor, which is the most simple type of Jordan algebra. We also study the existence of recovery maps for Bregman divergences on spin factors. In general the convex bodies of rank 2 appear as faces of state spaces of higher rank. Therefore our results give strong restrictions on which convex bodies could be the state space of a physical system with a well-behaved entropy function.Comment: 30 pages, 6 figure
    corecore