170 research outputs found

    Numerical calculation of transmission noise for the magnesium alloy cylinder head cover

    Get PDF
    Transmission noise of the magnesium alloy cylinder head cover was researched in this paper. Firstly, the numerical calculation mode of a cylinder head cover was compared with the experimental one. Results showed that the numerical calculation model had a relatively high accuracy, and it could be used in subsequent analysis. Secondly, sound pressure inside the cylinder head cover was extracted through the four-load method and taken as the sound source. Then, it was applied in a simulation model in order to simulate transmission noise of the actual situations. Afterwards, transmission noise of the magnesium alloy cylinder head cover was compared with the aluminum alloy one. It was shown that relatively low transmission noise was generated from the magnesium alloy cylinder head cover. Meanwhile, its mass was only 0.65 times of that of the aluminum alloy one. Therefore, the requirement for low noise and light weight was achieved by the magnesium alloy cylinder head cover. Then, dynamic stresses of cylinder head covers for two materials were compared. Results showed that dynamic stress of the magnesium alloy cylinder head cover was slightly smaller than that of the aluminum alloy one. The magnesium alloy cylinder head cover satisfied the requirement for strength and had a relatively prominent comprehensive performances. Finally, sound absorption coefficient of a porous material was calculated by using the numerical simulation technology. It was also laid inside the magnesium alloy cylinder head cover to constitute a composite cylinder head cover. Transmission noise of such composite cylinder head cover was much smaller than that of the original structure. This researches provided a method for low noise and light weight design of the cylinder head cover

    Heat Shock Protein 70 Protects the Heart from Ischemia/Reperfusion Injury through Inhibition of p38 MAPK Signaling.

    Get PDF
    BackgroundHeat shock protein 70 (Hsp70) has been shown to exert cardioprotection. Intracellular calcium ([Ca2+]i) overload induced by p38 mitogen-activated protein kinase (p38 MAPK) activation contributes to cardiac ischemia/reperfusion (I/R) injury. However, whether Hsp70 interacts with p38 MAPK signaling is unclear. Therefore, this study investigated the regulation of p38 MAPK by Hsp70 in I/R-induced cardiac injury.MethodsNeonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation for 6 h followed by 2 h reoxygenation (OGD/R), and rats underwent left anterior artery ligation for 30 min followed by 30 min of reperfusion. The p38 MAPK inhibitor (SB203580), Hsp70 inhibitor (Quercetin), and Hsp70 short hairpin RNA (shRNA) were used prior to OGD/R or I/R. Cell viability, lactate dehydrogenase (LDH) release, serum cardiac troponin I (cTnI), [Ca2+]i levels, cell apoptosis, myocardial infarct size, mRNA level of IL-1β and IL-6, and protein expression of Hsp70, phosphorylated p38 MAPK (p-p38 MAPK), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), phosphorylated signal transducer and activator of transcription3 (p-STAT3), and cleaved caspase3 were assessed.ResultsPretreatment with a p38 MAPK inhibitor, SB203580, significantly attenuated OGD/R-induced cell injury or I/R-induced myocardial injury, as evidenced by improved cell viability and lower LDH release, resulted in lower serum cTnI and myocardial infarct size, alleviation of [Ca2+]i overload and cell apoptosis, inhibition of IL-1β and IL-6, and modulation of protein expressions of p-p38 MAPK, SERCA2, p-STAT3, and cleaved-caspase3. Knockdown of Hsp70 by shRNA exacerbated OGD/R-induced cell injury, which was effectively abolished by SB203580. Moreover, inhibition of Hsp70 by quercetin enhanced I/R-induced myocardial injury, while SB203580 pretreatment reversed the harmful effects caused by quercetin.ConclusionsInhibition of Hsp70 aggravates [Ca2+]i overload, inflammation, and apoptosis through regulating p38 MAPK signaling during cardiac I/R injury, which may help provide novel insight into cardioprotective strategies

    Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Get PDF
    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600ºC for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt. % NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films

    Integrated Control of Hydromechanical Variable Transmissions

    Get PDF
    A hydromechanical variable transmission (HMT) has advantages of continuous variation and high efficiency. So it is one of the ideal transmissions of heavy vehicles. The continuous speed varying process involves speed governing in range and range shift. Integrated control strategy of the HMT is proposed in this paper. The algorithm of the asymmetric saturated incremental proportional integral derivative (PID) speed control strategy in range and range shift conditions are derived. And this paper presents the range shift logic and range shift control strategies. A controller model is built in Matlab Simulink and cosimulated with the model of vehicle equipped with a two-range HMT. The HMT prototype hardware-in-the-loop simulation (HILS) platform of the integrated control strategy is built. The HILS results show that the range shift process is smooth and speed fluctuation does not happen. In the throttle stable stage, the engine speed is adjusted to the near optimal speed, and its change rules are in accordance with simulation results. The integrated control strategy is reasonable

    Superconductivity and Charge-density-wave-like Transition in Th2Cu4As5

    Full text link
    We report the synthesis, crystal structure, and physical properties of a novel ternary compound, Th2_2Cu4_4As5_5. The material crystallizes in a tetragonal structure with lattice parameters a=4.0716(1)a=4.0716(1) {\AA} and c=24.8131(4)c=24.8131(4) {\AA}. Its structure can be described as an alternating stacking of fluorite-type Th2_2As2_2 layers with antifluorite-type double-layered Cu4_4As3_3 slabs. The measurement of electrical resistivity, magnetic susceptibility and specific heat reveals that Th2_2Cu4_4As5_5 undergoes bulk superconducting transition at 4.2 K. Moreover, all these physical quantities exhibit anomalies at 48 K, where the Hall coefficient change the sign. These findings suggest a charge-density-wave-like (CDW) transition, making Th2_2Cu4_4As5_5 a rare example for studying the interplay between CDW and superconductivity.Comment: 11 pages, 6 figures, and 1 tabl

    High Glucose Promotes Epithelial-Mesenchymal Transition of Uterus Endometrial Cancer Cells by Increasing ER/GLUT4-Mediated VEGF Secretion

    Get PDF
    Background/Aims: Uterus endometrial cancer (UEC) is the common malignancy among gynecologic cancers, and most of them are type I estrogen-dependent UEC. Diabetes is well-known risk factor for the development of UEC. However, the underlying link between high glucose (HG) and the estrogen receptor in UEC remains unclear. Epithelial-mesenchymal transition (EMT) has also been shown to occur during the initiation of metastasis in cancer progression. The aim of this study was to determine the relationships and roles of HG, estrogen receptor and EMT in the growth and migration of UEC. Methods: The expression of glucose transport protein 4 (GLUT4) in the control endometrium and UEC tissues was detected by immunohistochemistry (IHC); the cell viability and invasion were analyzed through CCK-8 and Matrigel invasion assays; the transcriptional level of EMT-related genes was evaluated through real-time PCR; and the effect of HG and / or GLUT4 on estrogen receptors, vascular endothelial growth factor (VEGF) and its receptor VEGFR was analyzed through western blotting, ELISA and flow cytometry (FCM) assay, respectively. In addition, Ishikawa-xenografted nude mice were constructed and were used to analyze the effect of estrogen and GLUT4 on the growth of UEC in vivo. Results: Here, we found that exposure to HG led to a high level of viability and invasion of UEC cell lines (UECC, Ishikawa and RL95-2 cells). Compared with the normal endometrium, a higher level of GLUT4 was observed in UEC tissues. Silencing GLUT4 obviously inhibited the HG-promoted viability, invasion and expression of EMT-related genes (TWIST, SNAIL and CTNNB1) of UECC promoted by HG. Further analysis showed that HG and GLUT4 promoted the secretion of VEGF and expression of VEGFR in UECC. Treatment with HG led to the increase of estrogen receptor α (ERα) and β (ERβ) in UECC, blocking ERα or ERβ resulted in the decreases in GLUT4 expression, TWIST, SNAIL and CTNNB1 transcription, and VEGF and VEGFR expression in UECC. Treatment with anti-human VEGF neutralizing antibody restricted the viability and invasion of UECC that was induced by HG and estrogen. Exposure to estrogen accelerated growth, VEGF production, and TWIST and CTNNB1 expression in UEC in Ishikawa-xenografted nude mice, and silencing GLUT4 restricted these effects. Conclusion: These data suggest that HG increases GLUT4 and VEGF/VEGFR expression, further promotes EMT process and accelerates the development of UEC by up-regulating E

    New insight into the microbiome, resistome, and mobilome on the dental waste water in the context of heavy metal environment

    Get PDF
    ObjectHospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW.MethodsDWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods.ResultsDWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. Pseudomonas putida, Pseudomonas aeruginosa, Chryseobacterium indologenes, Sphingomonas laterariae were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs.ConclusionDWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters

    The MALATANG Survey : The L GAS-L IR Correlation on Sub-kiloparsec Scale in Six Nearby Star-forming Galaxies as Traced by HCN J = 4 → 3 and HCO + J = 4 → 3

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aac512.We present HCN J = 4→3 and HCO+ J = 4→3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2×2 region at 14 (FWHM) resolution (corresponding to linear scales of ∼0.2-1.0 kpc). The LIR-Ldense relation, where the dense gas is traced by the HCN J = 4→3 and the HCO+ J = 4→3 emission, measured in our sample of spatially resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, LIR/Ldense, shows systematic variations with LIR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between LIR/Ldense ratio and the warm-dust temperature gauged by the 70 μm/100 μm flux ratio. We find that the luminosity ratios of IR/HCN (4-3) and IR/HCO+ (4-3), which can be taken as a proxy for the star formation efficiency (SFE) in the dense molecular gas (SFE dense), appear to be nearly independent of the dense gas fraction ( f dense) for our sample of galaxies. The SFE of the total molecular gas (SFEmol) is found to increase substantially with f dense when combining our data with those on local (ultra)luminous infrared galaxies and high-z quasars. The mean LHCN(4-3) LHCO+(4-3) line ratio measured for the six targeted galaxies is 0.9±0.6. No significant correlation is found for the L'HCN(4-3) L'HCO+(4-3) ratio with the star formation rate as traced by L IR, nor with the warm-dust temperature, for the different populations of galaxies.Peer reviewe

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
    • …
    corecore