117 research outputs found

    The gesture imitation test in dementia with Lewy bodies and Alzheimer's disease dementia

    Get PDF
    ObjectivesDementia with Lewy bodies (DLB) is the second most common type of neurodegenerative dementia following Alzheimer's disease dementia (ADD). This study investigated the diagnostic role of the gesture imitation test in detecting DLB and differentiating DLB from ADD.MethodsA total of 63 patients with DLB, 93 patients with ADD, and 88 healthy controls were included in this study. All participants were administered the gesture imitation test, the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the clock drawing test (CDT), and other neuropsychological tests.ResultsThe patients with DLB performed worse than the healthy controls in the global scores and on every item of the gesture imitation test (p < 0.001). The area under the curve (AUC) for the global scores was 0.889 (p < 0.001) in differentiating the DLB and control groups. Item 4 was a better discriminator, with a sensitivity of 79.37% and a specificity of 79.55%. The AUC for the global scores decreased to 0.593 and the difference was marginal (p = 0.079) in differentiating the DLB and ADD groups. The patients with DLB performed worse on Items 1 and 4 compared with the patients with ADD (p = 0.040, 0.004). The gesture imitation test was positively correlated with the scores of the MMSE (r = 0.355, p = 0.017), the MoCA (r = 0.382, p = 0.010), and the CDT (r = 0.407, p = 0.005) in patients with DLB.ConclusionThe gesture imitation test is an easy, rapid tool for detecting DLB and has a role in differentiating DLB from ADD, especially in Items 1 and 4

    Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications

    Get PDF
    Medium temperature photovoltaic/thermal (PV/T) systems have immense potential in the applications of absorption cooling, thermoelectric generation, and organic Rankine cycle power generation, etc. Amorphous silicon (a-Si) cells are promising in such applications regarding the low temperature coefficient, thermal annealing effect, thin film and avoidance of large thermal stress and breakdown at fluctuating temperatures. However, experimental study on the a-Si PV/T system is rarely reported. So far the feasibility of medium temperature PV/T systems using a-Si cells has not been demonstrated. In this study, the design and construction of an innovative a-Si PV/T system of stainless steel substrate are presented. Long-term outdoor performance of the system operating at medium temperature has been monitored in the past 15 months. The average electrical efficiency was 5.65%, 5.41% and 5.30% at the initial, intermediate and final phases of the long-test test, accompanied with a daily average thermal efficiency from about 21% to 31% in the non-heating season. The thermal and electrical performance of the system at 60 °C, 70 °C and 80 °C are also analyzed and compared. Moreover, a distributed parameter model with experimental validation is developed for an inside view of the heat transfer and power generation and to predict the system performance in various conditions. Technically, medium temperature operation has not resulted in interruption or observable deformation of the a-Si PV/T system during the period. The technical and thermodynamic feasibility of the a-Si PV/T system at medium operating temperature is demonstrated by the experimental and simulation results

    Induction of oxidative stress and related transcriptional effects of perfluorononanoic acid using an in vivo assessment

    Get PDF
    Perfluorononanoic acid (PFNA) is an organic pollutant ubiquitous in the environment. However, the potential toxicity of PFNA remains largely unknown in teleost fish. This study defined the oxidative stress and related transcriptional effects of PFNA at various concentrations on zebrafish larvae. Activities of superoxide dismutase were induced in PFNA-treated groups but attenuated with exposure to higher concentration. Catalase activity and lipid peroxidation were significantly inhibited or increased at the highest concentration, respectively. To test the apoptotic pathway, several genes related to cell apoptosis were examined using real-time PCR. The expression of p53, apoptosis-inducing factor (AIF) and c-Jun NH (2)-terminal kinase (JNK) was partially increased, while Bcl-2, an anti-apoptotic gene, was reduced, with no significant effects on Bax and caspase-3 during the exposure period. The effect of PFNA on lipid beta-oxidation system was investigated by examining the activity of peroxisome fatty acyl-COA oxidase (ACOX) and the expression of peroxisome proliferating activating receptors (PPARs). ACOX activity was moderately elevated with marginal significance and was not a significant consequence of PPAR alpha and PPAR gamma expression. The overall results suggest that turbulence of oxidative stress and apoptotic pathway is involved in PFNA-induced toxicity in zebrafish larvae, and the gene expression patterns are able to reveal some potential mechanisms of developmental toxicity. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved.Perfluorononanoic acid (PFNA) is an organic pollutant ubiquitous in the environment. However, the potential toxicity of PFNA remains largely unknown in teleost fish. This study defined the oxidative stress and related transcriptional effects of PFNA at various concentrations on zebrafish larvae. Activities of superoxide dismutase were induced in PFNA-treated groups but attenuated with exposure to higher concentration. Catalase activity and lipid peroxidation were significantly inhibited or increased at the highest concentration, respectively. To test the apoptotic pathway, several genes related to cell apoptosis were examined using real-time PCR. The expression of p53, apoptosis-inducing factor (AIF) and c-Jun NH (2)-terminal kinase (JNK) was partially increased, while Bcl-2, an anti-apoptotic gene, was reduced, with no significant effects on Bax and caspase-3 during the exposure period. The effect of PFNA on lipid beta-oxidation system was investigated by examining the activity of peroxisome fatty acyl-COA oxidase (ACOX) and the expression of peroxisome proliferating activating receptors (PPARs). ACOX activity was moderately elevated with marginal significance and was not a significant consequence of PPAR alpha and PPAR gamma expression. The overall results suggest that turbulence of oxidative stress and apoptotic pathway is involved in PFNA-induced toxicity in zebrafish larvae, and the gene expression patterns are able to reveal some potential mechanisms of developmental toxicity. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved

    Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    No full text
    Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71) and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71

    Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    No full text
    Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71) and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more "energy" into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71. (C) 2017 Production and hosting by Elsevier B.V. on behalf of King Saud University

    Evaluation of soil contamination indices in a mining area of Jiangxi, China.

    No full text
    There is currently a wide variety of methods used to evaluate soil contamination. We present a discussion of the advantages and limitations of different soil contamination assessment methods. In this study, we analyzed seven trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) that are indicators of soil contamination in Dexing, a city in China that is famous for its vast nonferrous mineral resources in China, using enrichment factor (EF), geoaccumulation index (Igeo), pollution index (PI), and principal component analysis (PCA). The three contamination indices and PCA were then mapped to understand the status and trends of soil contamination in this region. The entire study area is strongly enriched in Cd, Cu, Pb, and Zn, especially in areas near mine sites. As and Hg were also present in high concentrations in urban areas. Results indicated that Cr in this area originated from both anthropogenic and natural sources. PCA combined with Geographic Information System (GIS) was successfully used to discriminate between natural and anthropogenic trace metals

    Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans.

    Get PDF
    microRNAs (miRNAs), endogenous posttranscriptional repressors by base-pairing of their cognate mRNAs in plants and animals, have mostly been thought lost in the kingdom of fungi. Here, we report the identification of miRNAs from the fungus Cryptococcus neoformans. With bioinformatics and Northern blotting approaches, we found that these miRNAs and their hairpin precursors were present in this fungus. The size of miR1 and miR2 is 22 nt and 18 nt, respectively. The precursors are about ∼70 nt in length that is close to mammalian pre-miRNAs. Characteristic features of miRNAs are also found in miR1/2. We demonstrated that the identified miRNAs, miR1 and miR2, caused transgene silencing via the canonical RNAi pathway. Bioinformantics analysis helps to reveal a number of identical sequences of the miR1/2 in transposable elements (TEs) and pseudogenes, prompting us to think that fungal miRNAs might be involved in the regulation of the activity of transposons and the expression of pseudogenes. This study identified functional miRNAs in C. neoformans, and sheds light on the diversity and evolutionary origin of eukaryotic miRNAs

    Tetraspanin CD53 regulates peripheral blood leucocytes vitality and pathogen infection in turbot<i> (Scophthalmus</i><i> maximus)</i>

    No full text
    Cluster of differentiation 53 (CD53) also known as OX44 or tetraspanin 25 (TSPAN25) is a glycoprotein belonging to the tetraspanin family. Members of the tetraspanin family are characterized by four transmembrane domains, including intracellular N- and C-termini, and small and large extracellular domains. Currently, the function of CD53 in teleost is not well understood. In this study, we identified a CD53 (named SmCD53) from turbot (Scophthalmus maximus) and examined its expression and biological activity. SmCD53 contained 231 amino acid residues and was predicted to be a tetraspanin with small and large extracellular domains. SmCD53 expression was observed in different tissues, particularly in immune-related organs. Experimental infection with bacterial or viral pathogen significantly up-regulated SmCD53 expression in a time-dependent manner. Immunofluorescence microscopy analysis showed that SmCD53 was localized on the surface of PBL and was recognized by antibody against its large extracellular domain. Ligation of SmCD53 onto PBLs with antibodies suppressed the respiratory burst activity, inflammatory reaction, and enhanced cell viability. SmCD53 knockdown significantly enhanced bacterial dissemination and proliferation in turbot. Overall, these results underscore the importance of CD53 in the maintenance of the function and homeostasis of the immune system

    A chloroplast homologous recombinant empty vector of Dunaliella salina and its application

    No full text
    本发明涉及基因工程技术,具体涉及一种D。salina叶绿体同源重组空载体及其应用。 该载体包括启动子和终止子。 该重组空载体含有SEQ ID NO : 1所示碱基序列的上游同源臂和SEQ ID NO : 2所示碱基序列的下游同源臂。 插入SEQ ID NO : 1所示的核苷酸序列,其与至少一个外源基因形成多顺反子结构。 采用本发明的盐藻叶绿体稳定表达系统,可以在叶绿体中稳定表达多种外源基因
    corecore