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Perfluorononanoic acid (PFNA) is an organic pollutant ubiquitous in the environment. However, the potential
toxicity of PFNA remains largely unknown in teleost fish. This study defined the oxidative stress and related tran-
scriptional effects of PFNA at various concentrations on zebrafish larvae. Activities of superoxide dismutase were
induced in PFNA-treated groups but attenuatedwith exposure to higher concentration. Catalase activity and lipid
peroxidation were significantly inhibited or increased at the highest concentration, respectively. To test the ap-
optotic pathway, several genes related to cell apoptosis were examined using real-time PCR. The expression of
p53, apoptosis-inducing factor (AIF) and c-Jun NH (2)-terminal kinase (JNK) was partially increased, while
Bcl-2, an anti-apoptotic gene, was reduced, with no significant effects on Bax and caspase-3 during the exposure
period. The effect of PFNA on lipid β-oxidation systemwas investigated by examining the activity of peroxisome
fatty acyl-COA oxidase (ACOX) and the expression of peroxisome proliferating activating receptors (PPARs).
ACOX activity was moderately elevated with marginal significance and was not a significant consequence of
PPARα and PPARγ expression. The overall results suggest that turbulence of oxidative stress and apoptotic path-
way is involved in PFNA-induced toxicity in zebrafish larvae, and the gene expression patterns are able to reveal
some potential mechanisms of developmental toxicity.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.
1. Introduction

Perfluoroalkyl acids (PFAAs) are a family of perfluorinated chemicals
that consist of a carbon backbone with hydrogen replaced by fluorine.
The high energy C-F bonds result in remarkable chemical stability and
are highly resistant to degradation. Their wide application in industry
and common consumer products over the past several decades has re-
sulted in persistent and widespread pollution in the environment, in-
cluding air, water and soil, as well as in wildlife and humans (Sinclair
et al., 2006; Calafat et al., 2007; Lau et al., 2007; Ishibashi et al., 2008;
Kunacheva et al., 2012). PFAAs can cause a number of toxic effects in
the liver, immune system, and nervous system. They are especially
toxic during development and reproduction and have induced cancer
(Lau et al., 2007; Johansson et al., 2008). Perfluorooctanoic acid
(PFOA) and perfluorooctane sulfonate (PFOS) are the two primary
PFAA components with C8 chain lengths. In 2002, PFAAs and their pre-
cursors with C8 chain lengthswere phased out of use in consumer prod-
ucts. Consequently, emissions of PFOS and PFOA have decreased (Lau
et al., 2007). However, hundreds of related chemicals remain unregulat-
ed and perfluorononanoic acid (PFNA), a PFAAwith a nine-carbon back-
bone, continues to be released into the environment worldwide. PFNA
has been detected in the environment and in the tissues of humans
Published by Elsevier Inc. All rights r
and wildlife with mean concentrations increasing every year (Calafat
et al., 2007; Ishibashi et al., 2008). Accordingly, concerns about the pos-
sible health impacts of PFNA exposure have arisen.

Aquatic ecosystems serve as the ultimate sink for many environ-
mental pollutants that accumulate in fish species. The concentrations
of PFAAs in fish can reach 8850-fold greater than those in surface
water (Sinclair et al., 2006). Oxidative damage may play an important
role in the developmental toxicity caused by PFAAs in fish. PFAA-in-
duced oxidative stress has been reported in rare minnow (Wei et al.,
2008; Liu et al., 2009), zebrafish (Liu et al., 2008; Shi et al., 2008; Shi
and Zhou, 2010), Japanese medaka (Yang, 2010), salmon (Arukwe and
Mortensen, 2011), tilapia (Liu et al., 2007) and so on.While several tox-
icity tests have shown that PFAAs can cause oxidative stress as mea-
sured by various end points, changes to oxidative parameters and
related genes are variable by species and treatment regimen. PFOA in-
duces a significant inhibition of catalase (CAT) activity at high concen-
trations with no changes of superoxide dismutase (SOD) or
glutathione peroxidase (GPx) activities in the liver ofmale Japaneseme-
daka (Yang, 2010). Liu et al. (2007) reported significant induction of
caspase-3, -8, and -9 activities accompanied by increased levels of
SOD, CAT activities and lipid peroxidation (LPO) level (measuredbyma-
leic dialdehyde,MDA) in PFOA treated hepatocytes of freshwater tilapia,
whereas GPx activity was decreased. In contrast, Atlantic salmon cells
exposed to 25.0 mg/L PFOS for 48 h significantly down-regulate caspase
3B expression. Low concentration of PFOS (2.1 mg/L) inhibits the
eserved.
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transcription of peroxisomeproliferating activating receptorα (PPARα)
although PFOS acts as a PPARα agonist at high concentration
(25.0 mg/L) (Krøvel et al., 2008). Peroxisome fatty acyl-COA oxidase
(EC 1.3.3.6; ACOX) activity in the liver of fathead minnows increases
with lowPFOAconcentrations but is attenuatedwith exposure to higher
PFOA concentrations (Oakes et al., 2004). PFOA increases PPARαmRNA
levels in the gill of rareminnowswhile no obvious change in PPARα ex-
pression is observed in the liver (Liu et al., 2009). Another study con-
firms that exposure of salmon to PFOA produce changes in mRNA
expression of PPARs and ACOX1, but these responses show marked
organ differences (Arukwe and Mortensen, 2011). It's essential to gain
more knowledge about the action modes of PFAAs to fully elucidate
the mechanisms of PFAA toxicity.

Compared to shorter chain PFAAs, PFNA has a higher accumulation
propensity and is more physiologically persistent (Kudo et al., 2001;
Ohmori et al., 2003). The biological effects and toxicities of PFNA are
similar to other PFAAs and include hepatotoxicity, developmental and
reproductive toxicity, immunotoxicity, hormonal effects and carcinoge-
nicity in rodent (Lau et al., 2007; Fang et al., 2010). PFNA seemed to be
more toxic than PFOAbased on 72 h LC50 using a zebrafish assay (Zheng
et al., 2012). To date, only limited studies about the toxicmechanisms of
PFNA have been performed in aquatic organisms (Zhang et al., 2012;
Zheng et al., 2012). Until todayno study describes the PFNA-induced ox-
idative effects in teleost fish. With the potential developmental
disrupting potency of PFNA, more attention should be paid to the toxic-
ity of PFNA.

Given the experimental advantages, including small size of the em-
bryo, cheapmaintenance, readily available, well-documented biological
and genetic information, and many mutants, the zebrafish embryo is
considered to be an ideal model for studying toxicological mechanisms.
Zebrafish embryo assay is also regarded to be a pain-free in vivo test and
is gradually being accepted as a good replacement for other types of an-
imal experiments (Langheinrich et al., 2002; Yang et al., 2009). In this
study, zebrafish embryos were used to analyze the mechanism of
PFNA-induced oxidative toxicity. The changes in the activities of antiox-
idative enzymes and lipid peroxidation products were measured. Gene
expression patterns related to the apoptosis pathway (e.g., pro-
apoptotic [p53, Bax, JNK, AIF, caspase-3] and anti-apoptotic [Bcl-2])
were also examined to elucidate the potential mechanism of apoptosis
induced by PFNA. The effect of PFNA on the lipid β-oxidation system
was investigated by examining the expression of PPARs, which has
been shown to be peroxisome proliferator inducible, and the activity
of the ACOX enzyme, whose transcription is induced by PPARs.

2. Materials and methods

2.1. Chemicals

PFNA (97% purity) was obtained from Sigma-Aldrich Chemical Cor-
poration (St. Louis, MO, USA). The stock solution (15,000 mg/L) was
prepared by dissolving the crystal in chromatography-grade dimethyl
sulfoxide (DMSO). This was stored at 4 °C. Exposure solutions were di-
luted from the stock solutionwith embryonic water (0.2 mMCa(NO3)2,
0.13 mM MgSO4, 19.3 mM NaCl, 0.23 mM KCl and 1.67 mM HEPES,
pH = 7.2) to create the final concentrations. Concentrations of DMSO
in the exposure solutions were less than 0.01% (v/v).

2.2. Zebrafish maintenance and embryo exposure

Adult zebrafish were maintained at 28 ± 0.5 °C in a closed flow-
through system with charcoal-filtered tap water. Aquaria were cleaned
each week. The fish were fed live Artemia nauplii twice daily. Zebrafish
embryos were obtained from spawning adults in groups of about 6
males and 3 females in tanks overnight. Mating, spawning, and fertiliza-
tion took place within 30 min after light onset in the morning as has
been previously used. Nylon nets were used at the bottom of each
tank to allow eggs to settle and prevent adult fish from consuming
them.

The zebrafish develop rapidly and gastrulation begins at about 6 hpf
(hours post fertilization). Spontaneous movements emerge and tail is
detached from the yolk with heart beating at 24 hpf, and embryogene-
sis is essentially completed at 96 hpf, as most organs are formed and
functioning by this time (Kimmel et al., 1995). Thus at 6 hpf embryos
were examined under a dissecting microscope, and those embryos
that developed normally and reached the blastula stage were selected
for PFNA exposure. Embryos were placed in an incubation chamber at
28 ± 0.5 °C and subjected to a 14/10 h light/dark cycle.
2.3. Activities of antioxidant enzymes

After PFNA treatment at various concentrations (0, 0.2, 0.5, 1, 5, and
15 mg/L) for 140 h, the exposure solution was removed, and the larvae
were rinsed gently with distilled water three times. Whole-body ho-
mogenates in 500 μL of cold phosphate buffered saline (PBS,
pH = 7.5) were immediately prepared and centrifuged at 12,000 g for
15 min at 4 °C. The supernatants were collected for various assays.

Catalase (EC 1.11.1.6; CAT) and superoxide dismutase (EC 1.15.1.1;
SOD) activities were measured according to the protocols of commer-
cially available kits (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China). CAT activity was measured by the decrease in absorbance
at 240 nm due to H2O2 consumption. One unit of CAT activity was de-
fined as the amount of enzyme decomposing 1 μmol H2O2 in 1 s; SOD
activity was evaluated by the inhibition rate of the superoxide radicals-
dependent cytochrome C reduction. The result of this enzymatic assay
was given in units of SOD activity per milligram of protein (U/mg),
where 1 U of SOD was defined as the amount of sample causing 50% in-
hibition of cytochrome C reduction.
2.4. Lipid peroxidation and protein assay

Lipid peroxidation (measured asMDA) levelwas determined using a
kit (Nanjing Jiancheng Bioengineering Institute). The MDA level was
expressed as nanomoles per milligram protein. Protein content was
assayed by the Bradford method, using bovine serum albumin (Sigma-
Aldrich) as a standard.
2.5. Enzyme activity of ACOX

The assay for ACOX activity (EC 1.3.3.6) was measured according to
themethod described previously (Oakes et al., 2003). The ACOX activity
was expressed as nmol H2O2/min/mg protein. Twenty larvae per sam-
ple were pooled to measure the ACOX activity.
2.6. Total RNA extraction and quantitative real-time PCR (QPCR)

Total RNA was extracted from 20 zebrafish larvae for each group
using Trizol reagent (Invitrogen Corp., Carlsbad, CA, USA) according to
the instructions of manufacturer. RNA integrity was assessed by stan-
dard denaturing agarose gel electrophoresis. Real-time PCR was per-
formed with an ABI 7500 fast Sequence Detector System (Perkin-
Elmer Applied Biosystems, Foster City, CA, USA) using SYBR Premix
ExTaq™ (Takara Bio., Japan). The gene-specific primers were used as
previously reported (Shi et al., 2008; Deng et al., 2009; Shi and Zhou,
2010) or designed by Primer Premier 5.0 software. The expression
level of the target gene was normalized to the mRNA content of its ref-
erence gene (β-actin). The melting curve was analyzed to differentiate
the desired amplicons and the primer-dimers or DNA contaminants.
The gene expression levels were measured in triplicate for each
treatment.



Fig. 2. Changes of MDA level in zebrafish larvae exposed to different concentrations of
PFNA. Double asterisk (**) indicates a highly significant difference (p b 0.01). Values are
the means of four replicate exposures and are presented as mean ± SEM.
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2.7. Statistical analysis

All results were presented as mean ± SEM. Differences were evalu-
ated by one-way analysis of variance (ANOVA) and Tukey's post hoc test
using SPSS (version 16.0). A p-value less than 0.05 was considered to be
significant.

3. Results

3.1. Activities of antioxidative enzymes

SOD, the endogenous scavenger, catalyzes the dismutation of the
highly reactive superoxide anion to H2O2. In PFNA treated zebrafish lar-
vae, SODwas significantly increased by 67% and 83% in the 1 and 5 mg/L
exposure groups, respectively, comparedwith the control. The SODwas
decreased in the 15 mg/L PFNA exposure group (Fig. 1).

CAT is responsible for the reduction of hydrogen peroxide and pro-
tection from the oxidation of unsaturated fatty acids in the cell mem-
brane. CAT activity was significantly decreased by 39% in the 15 mg/L
exposure group (Fig. 1).

3.2. Lipid peroxidation

MDA was indicative of lipid peroxidation. MDA content was in-
creased by 100.9% in the 15 mg/L exposure group compared with the
control. TheMDAcontentwas slightly increased but not statistically sig-
nificant in the 5 mg/L PFNA exposure group (p N 0.05). No marked
changeswere observedwhen the larvaewere exposed to lower concen-
trations (Fig. 2).

3.3. Effects of PFNA exposure on mRNA expression of genes related to
apoptosis

Expression profiles of genes related to apoptosis were measured. c-
Jun NH (2)-terminal kinase (JNK) gene transcription was significantly
increased by 2.9- and 3.1-fold in the 1 and 5 mg/L PFNA exposure
groups, respectively. The increase in 0.5 mg/L treatment group was
not significant (p N 0.05) (Fig. 3A). The mRNA levels of the p53 gene
were significantly elevated in a concentration dependent manner by
1.75-, 2.95- and 3.75-fold in 0.5, 1, and 5 mg/L PFNA exposure groups,
respectively (Fig. 3B). Bax and Bcl-2 are twomembers of the Bcl2 family
that play important roles in the regulation of apoptosis. Bax, the
multidomain pro-apoptotic gene, exhibited no significant difference be-
tween the control and PFNA-treated groups (Fig. 3C). Down-regulation
of Bcl-2 (inhibitor of Bax) gene expressionwas observed upon exposure
to 0.5, 1, and 5 mg/L PFNA, decreasing 1.53-, 1.38-, and 1.92-fold, re-
spectively (Fig. 3D). Caspase-3, a critical gene downstream in the apo-
ptosis pathway, exhibited no marked difference relative to the control
group (Fig. 3E). Apoptosis-inducing factor (AIF), an initiator of
Fig. 1.Alteration of SOD and CAT activities in zebrafish larvae exposed to different concen-
trations of PFNA. Statistically significant values are indicated by asterisks (*p b 0.05).
Values are the means of four replicate exposures and are presented as mean ± SEM.
caspase-independent apoptosis, was induced in PFNA treated larvae.
Gene transcription was significantly increased by 1.8- and 2.1-fold in
the 0.5 and 5 mg/L PFNA exposure groups, respectively (Fig. 3F).

3.4. Effects of PFNA exposure on acyl-CoA oxidase activity and PPAR
expression

ACOX activity wasmeasured to determine if PFNA exposure was as-
sociated with the induction of peroxisome proliferation in zebrafish.
The activities of ACOX increased at all concentrations, but the differ-
enceswere not statistically significant (p N 0.05). In the highest concen-
tration (5 mg/L), ACOX activity was increased by 28% with a marginal
significance (p = 0.06) (Fig. 4A).

PPAR is a key factor in regulating the activity of ACOX in peroxi-
somes. The expression of PPARα (a and b) and PPARγ was quantified
in zebrafish, and the levels of these transcripts are shown in Fig. 4B.
PPARαa and b were reduced in 1.0 and 5.0 mg/L PFNA exposure
group, respectively, and no different changes were observed in other
concentrations. The levels of PPARγmRNA slightly increased at all con-
centrations compared to the control group, but the changes were not
statistically significant (p N 0.05).

4. Discussion

Peroxisomal-oxidation is a process that generates hydrogen perox-
ide (H2O2), which can cause oxidative stress and oxidative damage to
proteins and DNA. Gene expression profiles of animals exposed to
PFOS and PFOA have revealed that one of the major pathways affected
by PFAAs is peroxisomal fatty acid beta-oxidation (Hu et al., 2005;
Guruge et al., 2006; Yeung et al., 2007). It is clear from these studies
that perturbation of lipid metabolism is one of the main causative bio-
chemical events that lead to the adverse health outcomes associated
with PFOS and PFOA exposure. Peroxisome proliferating activating re-
ceptor (PPAR) is the principle mediator of peroxisome proliferation
and plays a pivotal role in controlling peroxisomal fatty acid oxidation
(Mandard et al., 2004). PFAA exposure reportedly produces reactive ox-
ygen species (ROS) and enhances oxidative damage via PPAR activation
(Fang et al., 2010; Yang, 2010; Arukwe and Mortensen, 2011). ACOX,
which catalyzes the first and rate-limiting step in fatty acid peroxisomal
oxidation, is regulated by PPARs. Our data indicated that ACOX activity
was moderately influenced by PFNA exposure in zebrafish and was
not a significant consequence of PPAR expression. There are conflicting
data regarding the ability of PFAAs to induce expression of PPAR in dif-
ferent organisms. For example, while the up-regulated expression of
both PPARα and PPARγ is characteristic findings in rats treated with
perfluorododecanoic acid (PFDoA) (Zhang et al., 2008) or PFNA (Fang
et al., 2010), the inhibition of PPARα by PFDoA (Liu et al., 2008) or
PFNA is found in zebrafish (Zhang et al., 2012). PFAAs seem to produce

image of Fig.�2


Fig. 3.Quantitative real-time PCR analyses of gene expression levels of (A) JNK1, (B) p53, (C) Bax, (D) Bcl-2, (E) caspase-3, and (F) AIF in zebrafish larvae exposed to different concentra-
tions of PFNA. Gene expression levels represent the relativemRNA expression compared to the control. Values significantly different from the control are indicated by asterisks (*p b 0.05;
**p b 0.01). Values are the means of three replicate exposures and are presented as mean ± SEM.
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more robust transcriptional responses than fish. Changes to PPARs and
ACOX may also be variable in different tissues and with various treat-
ment concentrations (Oakes et al., 2004; Krøvel et al., 2008; Liu et al.,
2009; Arukwe and Mortensen, 2011). In addition, PPAR expression
may also change in a stage-specific manner. It has been shown that ef-
fects of peroxisome proliferation, including ACOX in goldfish, disappear
with the time of exposure through the adaptive response (Mimeault
et al., 2006). PFOS elicits a transcriptional response of the PPAR pathway
in Oryzias melastigma in a stage-specific manner. PPARα and PPARβ are
first inhibited at 4 dpf and are induced at 10 dpf (Fang et al., 2012). The
molecularmechanismunderlying the variable expression pattern is un-
known. Althoughmany studies have indicated that the toxicity of PFAAs
is related to the activation of PPARs, the present results suggest that the
PPAR-independent pathways altered by PFNA, such as the constitutive
androstane receptors and the pregnaneX receptors involve in xenobiot-
ic metabolism and phase I, II, and III processes, should not be
discounted.

Increased hydrogen peroxide (H2O2) production due to exaggerated
fatty acid β-oxidation may be harmful for the organism (Bonekamp
et al., 2009). These may cause deleterious cellular effects, such as cell
death and other pathological conditions, as a result of ROS produced
during chemical or oxidative stress conditions (Bonekamp et al.,
2009). An adaptation during limited oxygen conditions requires the in-
duction of antioxidant and associated enzymes, such as CAT, SOD and

image of Fig.�3


Fig. 4. Peroxisomal acyl-CoA oxidase activity (A) and gene expression levels of PPARs (B)
in zebrafish larvae exposed to different concentrations of PFNA. Values significantly differ-
ent from the control are indicated by asterisks (*p b 0.05). Gene expression levels repre-
sent the relative mRNA expression compared to the control and are the means of three
replicate exposures presented as mean ± SEM.
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GPx, in order to reduce potential damage during oxygen reintroduction.
In the present study, SOD was significantly induced in PFNA-treated
groups. Increased SOD activity may be responsible for alleviation of
PFNA-caused oxidative stress in zebrafish. However, higher concentra-
tion of PFNA appeared to reduce SOD activity. This may be explained
by the excess production of superoxide radicals, which, after their trans-
formation to H2O2, cause an oxidation of cysteine in the enzyme and de-
activate SOD activity. This study showed that PFNA induced a significant
inhibition of CAT activity at high concentration. This result is in accor-
dance with the decreased catalase enzyme activity in the liver of
Japanese medaka (Yang, 2010) and the oxidative stress detected in
male fathead minnow (Oakes et al., 2004) after exposure to PFOA. The
decrease in CAT activity may be attributed to the excess of superoxide
anion radicals that result from the reduction in SOD activity. In fact, pre-
vious study indicated that high production of superoxide anion radicals
inhibited CAT activity (Moreno et al., 2005). Catalase serves as a primary
defense enzyme against oxidative stress such as hydrogen peroxide
generated from peroxisomal β-oxidation of fatty acids. If catalase is a
limiting step in the removal of peroxide, this can result in an increase
in hydrogen peroxide, which can induce lipid peroxidation, membrane
damage, accumulation of lipofuscin, and DNA damage. Indeed, a signif-
icant irreversible induction of lipid peroxidation occurred at high expo-
sure concentration in our study. This showed that although antioxidant
status played an important protective role against PFNA-caused oxida-
tive stress, the defense capacity cannot sufficiently alleviate oxidative
damage occurring under high exposure concentration.

Stress-induced apoptosis is thought to contribute to abnormal de-
velopment during embryogenesis. In the present investigation, several
important genes that might be involved in apoptosis were investigated
to elucidate themechanisms of PFNA exposure. JNK serves as an impor-
tant pro-apoptotic mechanism in oxidative stressed cells, and mito-
chondria are the main sites of action for JNK during apoptosis (Shen
and Liu, 2006). The tumor suppressor gene, p53, has been examined
for its role inDNAdamage-induced apoptosis that is chemically induced
(Shen andWhite, 2001; Langheinrich et al., 2002). The alteration of the
pro-apoptotic genes suggests that p53 and JNK are involved in cell apo-
ptosis due to PFNA exposure. Bcl-2, which is localizes to sites of free rad-
ical generation, functions as an apparent antioxidant against oxidative
stress to prevent apoptosis. The Bax/Bcl-2 ratio appears to be a critical
determinant of the integrity of mitochondrial membrane (Shen and
White, 2001). The increased Bax/Bcl-2 ratio suggests that disruption of
mitochondrial membrane integrity may occur after PFNA exposure.
Caspase-3 has been identified as a key executor of apoptosis and is
one of themost important caspases to be activated downstream in apo-
ptosis pathways (Cohen, 1997). AIF is an initiator of caspase-
independent apoptosis. The gene expression pattern indicates that wa-
terborne PFNA is able to induce apoptosis through the involvement of
caspase-independent pathway in zebrafish larvae. This is consistent
with a study in rodents, which reveals that PFNA induces apoptosis in
a caspase-independent death pathway (Fang et al., 2010). On the basis
of results from the present study, it may be hypothesized that PFNA ex-
posure induces oxidative stress and causes damage to cell membranes
(as evident from increased LPO levels) and subsequently, the oxidative
stimulus may trigger JNK and p53. JNK represses the function of the
anti-apoptotic gene Bcl-2. The resulting increase of Bax/Bcl-2 ratio dis-
rupts themitochondrialmembrane. Once the integrity of themitochon-
drial membrane is disrupted, mitochondrion releases cytochrome C and
triggers AIF, therefore inducing caspase-independent apoptosis.

Thus, oxidative stress and the activation of apoptotic signaling path-
way contribute to PFNA-induced toxicity in zebrafish. The gene expres-
sion patterns in the larvae reveal potential toxicity mechanisms of
PFNA. As the post-hatched larval stage is more sensitive than the adult
stage, sensitivity to the chemical can be increased with chronic expo-
sure. It is therefore necessary for future studies to investigate the ex-
tended post-hatched stage in addition to the life-cycle exposure to
fully investigate the potential toxicity of PFNA.
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