15 research outputs found

    EGMM: an Evidential Version of the Gaussian Mixture Model for Clustering

    Full text link
    The Gaussian mixture model (GMM) provides a convenient yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation-Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as convenient as the classical GMM, but can generate a more informative evidential partition for the considered dataset. Experiments with synthetic and real datasets demonstrate the good performance of the proposed method as compared with some other prototype-based and model-based clustering techniques

    EEkNN: k-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples

    No full text
    The k-nearest neighbor (kNN) rule is one of the most popular classification algorithms applied in many fields because it is very simple to understand and easy to design. However, one of the major problems encountered in using the kNN rule is that all of the training samples are considered equally important in the assignment of the class label to the query pattern. In this paper, an evidential editing version of the kNN rule is developed within the framework of belief function theory. The proposal is composed of two procedures. An evidential editing procedure is first proposed to reassign the original training samples with new labels represented by an evidential membership structure, which provides a general representation model regarding the class membership of the training samples. After editing, a classification procedure specifically designed for evidently edited training samples is developed in the belief function framework to handle the more general situation in which the edited training samples are assigned dependent evidential labels. Three synthetic datasets and six real datasets collected from various fields were used to evaluate the performance of the proposed method. The reported results show that the proposal achieves better performance than other considered kNN-based methods, especially for datasets with high imprecision ratios

    Classification des données incertaines dans le cadre des fonctions de croyance : la métode des k plus proches voisins et la méthode à base de règles

    No full text
    In many classification problems, data are inherently uncertain. The available training data might be imprecise, incomplete, even unreliable. Besides, partial expert knowledge characterizing the classification problem may also be available. These different types of uncertainty bring great challenges to classifier design. The theory of belief functions provides a well-founded and elegant framework to represent and combine a large variety of uncertain information. In this thesis, we use this theory to address the uncertain data classification problems based on two popular approaches, i.e., the k-nearest neighbor rule (kNN) andrule-based classification systems. For the kNN rule, one concern is that the imprecise training data in class over lapping regions may greatly affect its performance. An evidential editing version of the kNNrule was developed based on the theory of belief functions in order to well model the imprecise information for those samples in over lapping regions. Another consideration is that, sometimes, only an incomplete training data set is available, in which case the ideal behaviors of the kNN rule degrade dramatically. Motivated by this problem, we designedan evidential fusion scheme for combining a group of pairwise kNN classifiers developed based on locally learned pairwise distance metrics.For rule-based classification systems, in order to improving their performance in complex applications, we extended the traditional fuzzy rule-based classification system in the framework of belief functions and develop a belief rule-based classification system to address uncertain information in complex classification problems. Further, considering that in some applications, apart from training data collected by sensors, partial expert knowledge can also be available, a hybrid belief rule-based classification system was developed to make use of these two types of information jointly for classification.Dans de nombreux problèmes de classification, les données sont intrinsèquement incertaines. Les données d’apprentissage disponibles peuvent être imprécises, incomplètes, ou même peu fiables. En outre, des connaissances spécialisées partielles qui caractérisent le problème de classification peuvent également être disponibles. Ces différents types d’incertitude posent de grands défis pour la conception de classifieurs. La théorie des fonctions de croyance fournit un cadre rigoureux et élégant pour la représentation et la combinaison d’une grande variété d’informations incertaines. Dans cette thèse, nous utilisons cette théorie pour résoudre les problèmes de classification des données incertaines sur la base de deux approches courantes, à savoir, la méthode des k plus proches voisins (kNN) et la méthode à base de règles.Pour la méthode kNN, une préoccupation est que les données d’apprentissage imprécises dans les régions où les classes de chevauchent peuvent affecter ses performances de manière importante. Une méthode d’édition a été développée dans le cadre de la théorie des fonctions de croyance pour modéliser l’information imprécise apportée par les échantillons dans les régions qui se chevauchent. Une autre considération est que, parfois, seul un ensemble de données d’apprentissage incomplet est disponible, auquel cas les performances de la méthode kNN se dégradent considérablement. Motivé par ce problème, nous avons développé une méthode de fusion efficace pour combiner un ensemble de classifieurs kNN couplés utilisant des métriques couplées apprises localement. Pour la méthode à base de règles, afin d’améliorer sa performance dans les applications complexes, nous étendons la méthode traditionnelle dans le cadre des fonctions de croyance. Nous développons un système de classification fondé sur des règles de croyance pour traiter des informations incertains dans les problèmes de classification complexes. En outre, dans certaines applications, en plus de données d’apprentissage, des connaissances expertes peuvent également être disponibles. Nous avons donc développé un système de classification hybride fondé sur des règles de croyance permettant d’utiliser ces deux types d’information pour la classification

    EE<i>k</i>NN: <i>k</i>-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples

    No full text
    The k-nearest neighbor (kNN) rule is one of the most popular classification algorithms applied in many fields because it is very simple to understand and easy to design. However, one of the major problems encountered in using the kNN rule is that all of the training samples are considered equally important in the assignment of the class label to the query pattern. In this paper, an evidential editing version of the kNN rule is developed within the framework of belief function theory. The proposal is composed of two procedures. An evidential editing procedure is first proposed to reassign the original training samples with new labels represented by an evidential membership structure, which provides a general representation model regarding the class membership of the training samples. After editing, a classification procedure specifically designed for evidently edited training samples is developed in the belief function framework to handle the more general situation in which the edited training samples are assigned dependent evidential labels. Three synthetic datasets and six real datasets collected from various fields were used to evaluate the performance of the proposed method. The reported results show that the proposal achieves better performance than other considered kNN-based methods, especially for datasets with high imprecision ratios

    A Hybrid Belief Rule-Based Classification System Based on Uncertain Training Data and Expert Knowledge

    No full text
    International audienceIn some real-world classification applications, such as target recognition, both training data collected by sensors and expert knowledge may be available. These two types of information are usually independent and complementary, and both are useful for classification. In this paper, a hybrid belief rule-based classification system (HBRBCS) is developed to make joint use of these two types of information. The belief rule structure, which is capable of capturing fuzzy, imprecise, and incomplete causal relationships, is used as the common representation model. With the belief rule structure, a data-driven belief rule base (DBRB) and a knowledge-driven belief rule base (KBRB) are learnt from uncertain training data and expert knowledge, respectively. A fusion algorithm is proposed to combine the DBRB and KBRB to obtain an optimal hybrid belief rule base (HBRB). A belief reasoning & decision making module is then developed to classify a query pattern based on the generated HBRB. An airborne target classification problem in the air surveillance system is studied to demonstrate the performance of the proposed HBRBCS for combining both uncertain sensor measurements and expert knowledge to make classification

    Fusion of Pairwise Nearest-Neighbor Classifiers Based on Pairwise-Weighted Distance Metric and Dempster-Shafer Theory

    No full text
    International audienceThe performance of the nearest-neighbor (NN) classifier is known to be very sensitive to the distance metric used in classifying a query pattern, especially in scarce-prototype cases. In this paper, a pairwise-weighted (PW) distance metric related to pairs of class labels is proposed. Compared with the existing distance metrics, it provides more flexibility to design the feature weights so that the local specifics in feature space can be well characterized. Base on the proposed PW distance metric, a polychotomous NN classification problem is solved by combining several pairwise NN (PNN) classifiers within the framework of Dempster-Shafer theory to deal with the uncertain output information. Two experiments based on synthetic and real data sets were carried out to show the effectiveness of the proposed method

    Compact Belief Rule Base Learning for Classification with Evidential Clustering

    No full text
    The belief rule-based classification system (BRBCS) is a promising technique for addressing different types of uncertainty in complex classification problems, by introducing the belief function theory into the classical fuzzy rule-based classification system. However, in the BRBCS, high numbers of instances and features generally induce a belief rule base (BRB) with large size, which degrades the interpretability of the classification model for big data sets. In this paper, a BRB learning method based on the evidential C-means clustering (ECM) algorithm is proposed to efficiently design a compact belief rule-based classification system (CBRBCS). First, a supervised version of the ECM algorithm is designed by means of weighted product-space clustering to partition the training set with the goals of obtaining both good inter-cluster separability and inner-cluster pureness. Then, a systematic method is developed to construct belief rules based on the obtained credal partitions. Finally, an evidential partition entropy-based optimization procedure is designed to get a compact BRB with a better trade-off between accuracy and interpretability. The key benefit of the proposed CBRBCS is that it can provide a more interpretable classification model on the premise of comparative accuracy. Experiments based on synthetic and real data sets have been conducted to evaluate the classification accuracy and interpretability of the proposal

    Belief rule-based classification system: Extension of FRBCS in belief functions framework

    No full text
    International audienceAmong the computational intelligence techniques employed to solve classification problems, the fuzzy rule-based classification system (FRBCS) is a popular tool capable of building a linguistic model interpretable to users. However, it may face lack of accuracy in some complex applications, by the fact that the inflexibility of the concept of the linguistic variable imposes hard restrictions on the fuzzy rule structure. In this paper, we extend the fuzzy rule in FRBCS with a belief rule structure and develop a belief rule-based classification system (BRBCS) to address imprecise or incomplete information in complex classification problems. The two components of the proposed BRBCS, i.e., the belief rule base (BRB) and the belief reasoning method (BRM), are designed specifically by taking into account the pattern noise that existes in many real-world data sets. Four experiments based on benchmark data sets are carried out to evaluate the classification accuracy, robustness, interpretability and time complexity of the proposed method
    corecore