11,370 research outputs found
Neutrinoless double-beta decay matrix elements in large shell-model spaces with the generator-coordinate method
We use the generator-coordinate method with realistic shell-model
interactions to closely approximate full shell-model calculations of the matrix
elements for the neutrinoless double-beta decay of Ca, Ge, and
Se. We work in one major shell for the first isotope, in the
space for the second and third, and finally in two major
shells for all three. Our coordinates include not only the usual axial
deformation parameter , but also the triaxiality angle and
neutron-proton pairing amplitudes. In the smaller model spaces our matrix
elements agree well with those of full shell-model diagonalization, suggesting
that our Hamiltonian-based GCM captures most of the important valence-space
correlations. In two major shells, where exact diagonalization is not currently
possible, our matrix elements are only slightly different from those in a
single shell.Comment: 8 pages, 7 figure
Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. II. Anisotropy in particle shape
We extend the results from the first part of this series of two papers by
examining hyperuniformity in heterogeneous media composed of impenetrable
anisotropic inclusions. Specifically, we consider maximally random jammed
packings of hard ellipses and superdisks and show that these systems both
possess vanishing infinite-wavelength local-volume-fraction fluctuations and
quasi-long-range pair correlations. Our results suggest a strong generalization
of a conjecture by Torquato and Stillinger [Phys. Rev. E. 68, 041113 (2003)],
namely that all strictly jammed saturated packings of hard particles, including
those with size- and shape-distributions, are hyperuniform with signature
quasi-long-range correlations. We show that our arguments concerning the
constrained distribution of the void space in MRJ packings directly extend to
hard ellipse and superdisk packings, thereby providing a direct structural
explanation for the appearance of hyperuniformity and quasi-long-range
correlations in these systems. Additionally, we examine general heterogeneous
media with anisotropic inclusions and show for the first time that one can
decorate a periodic point pattern to obtain a hard-particle system that is not
hyperuniform with respect to local-volume-fraction fluctuations. This apparent
discrepancy can also be rationalized by appealing to the irregular distribution
of the void space arising from the anisotropic shapes of the particles. Our
work suggests the intriguing possibility that the MRJ states of hard particles
share certain universal features independent of the local properties of the
packings, including the packing fraction and average contact number per
particle.Comment: 29 pages, 9 figure
Diffusion of heat, energy, momentum, and mass in one-dimensional systems
We study diffusion processes of local fluctuations of heat, energy, momentum,
and mass in three paradigmatic one-dimensional systems. For each system,
diffusion processes of four physical quantities are simulated and the cross
correlations between them are investigated. We find that, in all three systems,
diffusion processes of energy and mass can be perfectly expressed as a linear
combination of those of heat and momentum, suggesting that diffusion processes
of heat and momentum may represent the heat mode and the sound mode in the
hydrodynamic theory. In addition, the dynamic structure factor, which describes
the diffusion behavior of local mass density fluctuations, is in general
insufficient for probing diffusion processes of other quantities because in
some cases there is no correlation between them. We also find that the
diffusion behavior of heat can be qualitatively different from that of energy,
and, as a result, previous studies trying to relate heat conduction to energy
diffusion should be revisited.Comment: 7 pages, 4 figure
Recommended from our members
Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature
The energy crisis and environmental pollution pose great challenges to human development. Traditional vapor-compression cooling consumes abundant energy and leads to a series of environmental problems. Radiative cooling without energy consumption and environmental pollution holds great promise as the next generation cooling technology, applied in buildings mostly in indirect way. In this work, a temperature-regulating module was introduced for direct summer cooling and winter heating. Firstly, the summer experiments were conduct to investigate the radiative cooling performance of the module. And the results indicated that the maximum indoor temperature reached only 27.5 °C with the ambient temperature of 34 °C in low latitude areas and the air conditioning system was on for only about a quarter of the day. Subsequently, the winter experiments were performed to explore the performance of the module in cooling and heating modes. The results indicated that indoor temperature can reach 25 °C in the daytime without additional heat supply and about a quarter of the day didn't require heating in winter. Additionally, the transient model of the module and the building revealed that the electricity saving of 42.4% (963.5 kWh) can be achieved in cooling season with the module, and that was 63.7% (1449.1 kWh) when coupling with energy storage system. Lastly, further discussion about the challenges and feasible solutions for radiative cooling to directly combine with the buildings were provided to advance the application of radiative cooling. Furthermore, with an acceptable payback period of 8 years, the maximum acceptable incremental cost reached 26.2 $/m2. The work opens up a new avenue for the application mode of the daytime radiative cooling technology
Reduced dynamics with renormalization in solid-state charge qubit measurement
Quantum measurement will inevitably cause backaction on the measured system,
resulting in the well known dephasing and relaxation. In this report, in the
context of solid--state qubit measurement by a mesoscopic detector, we show
that an alternative backaction known as renormalization is important under some
circumstances. This effect is largely overlooked in the theory of quantum
measurement.Comment: 12 pages, 4 figure
- …