66 research outputs found
Study on multi-period palaeotectonic stress fields simulation and fractures distribution prediction in Lannigou gold mine, Guizhou
A significant controlling factor for gold mineralisation is the tectonic stress field, and the fractures formed under its action are the migration channels and ore-holding spaces of ore-forming fluids, which often directly control the migration and accumulation of ore-forming fluids. Therefore, performing quantitative prediction research on the distribution of fractures in the Guizhou, Lannigou gold deposit in order to identify potential fluid flow pathways is of utmost importance for ore prospecting in practical. In this study, a 3D geological entity model was generated based on the GOCAD platform by analysing and processing the geological data of the studied area, as well achieved is the accurate characterisation of the study area’s geometric model. By integrating regional tectonic evolution history analysis, geological interpretation, rock mechanics experiments and acoustic emission testing, the finite element method was utilised to create a 3D geomechanical model of the research area, the paleotectonic stress field after the Indosinian and Yanshanian movements were superimposed was simulated, in associated with the rock failure criterion, the comprehensive fracture rate parameter (Iz) is introduced to predict the fracture distribution. The results show that the research area’s maximum principal stress is primarily distributed between 153.85 and 189.53 MPa, and the maximum shear stress is between 83.53 and 98.42 MPa. The spatial distribution of faults influences the stress distribution characteristics significantly, and the stress level is relatively high at the intersection of the fault, the end of the fault and the vicinity of the fault zone, and the stress value between the faults is relatively low. The tectonic stress field primarily controls the distribution and development of fractures, which is usually consistent with the areas with high values of maximum principal stress and maximum shear stress. Using the combined modeling technique of GOCAD and midas GTS to realize the conversion from 3D geological model to geomechanical model, a set of comprehensive fracture distribution prediction technique for the superposition of multi-stage tectonic stress fields of mineral deposits in complex tectonic areas has been formed, and provide a reference for the prediction of fracture distribution in similar complex structural areas.This study was supported by the program of China Scholarships Council (No. 202006670005); the National Natural Science Foundation of China (Project Nos. 51964007, 52264004, 52104080, 41962008); the Guizhou Province Science and Technology Support Program Project (Number: QIANKEHE Support [2021] General 516); Scientific and Technological Innovation Talents Team in Guizhou Province (Project No. [2019]5619); the Guizhou Province Highlevel Innovative Talents Training Project (Grant No. JZ2016-4011). Major Collaborative Innovation Project for Strategic Action of Mineral Search Breakthrough in Guizhou Province ([2022] ZD005); Natural Science Special (Special Post) Scientific Research Fund Project of Guizhou University (Project No. Guizhou University Special Post (2021) 51).Peer ReviewedPostprint (published version
INT: Towards Infinite-frames 3D Detection with An Efficient Framework
It is natural to construct a multi-frame instead of a single-frame 3D
detector for a continuous-time stream. Although increasing the number of frames
might improve performance, previous multi-frame studies only used very limited
frames to build their systems due to the dramatically increased computational
and memory cost. To address these issues, we propose a novel on-stream training
and prediction framework that, in theory, can employ an infinite number of
frames while keeping the same amount of computation as a single-frame detector.
This infinite framework (INT), which can be used with most existing detectors,
is utilized, for example, on the popular CenterPoint, with significant latency
reductions and performance improvements. We've also conducted extensive
experiments on two large-scale datasets, nuScenes and Waymo Open Dataset, to
demonstrate the scheme's effectiveness and efficiency. By employing INT on
CenterPoint, we can get around 7% (Waymo) and 15% (nuScenes) performance boost
with only 2~4ms latency overhead, and currently SOTA on the Waymo 3D Detection
leaderboard.Comment: accepted by ECCV202
The contribution of double-fed wind farms to transient voltage and damping of power grids
Kako bi se povećala mogućnost održavanja prolaznog napona i oscilacija sustava prigušenja, u radu se predstavlja dodatna prolazna upravljačka shema vjetroelektrane. Analiza pokazuje da u uvjetima jakih mreža, oslanjanje na vlastitu reaktivnu snagu turbina na vjetar u svrhu podrške pada prolaznog napona, dovodi do značajnog povećanja struje rotora; u uvjetima slabih mreža, prolazna reaktivna snaga vjetroelektrana ne samo da služi za prigušivanje pada prolaznog napona nego i čini prihvatljivom povećanje uzbudne struje rotora. Uz to, kad se dvostruko napajani indukcioni generatori pomiješaju s konvencionalnim energanama za prijenos snage, moguće je upravljati povećanjem prigušenja sustava dodajući prigušenje preko vjetroelektrana u nastojanju poboljšanja stabilnosti cjelokupnog sustava. U svrhu implementacije ove sheme, proizvodimo eksperimentalni prototip sastavljen od IPC, glavne sabirnice i optičke opreme i provodimo ispitivanje zatvorene petlje na digitalnom simulatoru u realnom vremenu (RTDS). Simulacije pokazuju da u uvjetima slabih mreža implementacija regulacije reaktivne snage vjetreoelektrana može donekle prigušiti pad napona.To improve the ability of transient voltage support and that of damping system oscillation, this paper presents the additional transient control scheme of wind farm. The analysis indicates that under the condition of strong grids, relying on wind turbines’ own reactive power to support the transient voltage drop leads to the significant increase of rotor current; under the condition of weak grids, transient reactive power released by wind farms not only serves to suppress transient voltage drop but also makes acceptable the increase of rotor excitation current. In addition, when double-fed induction generators are mixed with conventional power plants for power transmission, we can control the increase of system damping by adding damping through wind turbines in a bid to improve the stability of the overall system. In order to implement this scheme, we produce the experimental prototype composed of IPC, fieldbus and optical equipment and conduct the closed-loop test on the real-time digital simulator (RTDS). Simulations show that under the condition of weak grids, implementing the reactive power regulation of wind farms can suppress their voltage drop to a certain extent
FusionFormer: A Multi-sensory Fusion in Bird's-Eye-View and Temporal Consistent Transformer for 3D Objection
Multi-sensor modal fusion has demonstrated strong advantages in 3D object
detection tasks. However, existing methods that fuse multi-modal features
through a simple channel concatenation require transformation features into
bird's eye view space and may lose the information on Z-axis thus leads to
inferior performance. To this end, we propose FusionFormer, an end-to-end
multi-modal fusion framework that leverages transformers to fuse multi-modal
features and obtain fused BEV features. And based on the flexible adaptability
of FusionFormer to the input modality representation, we propose a depth
prediction branch that can be added to the framework to improve detection
performance in camera-based detection tasks. In addition, we propose a
plug-and-play temporal fusion module based on transformers that can fuse
historical frame BEV features for more stable and reliable detection results.
We evaluate our method on the nuScenes dataset and achieve 72.6% mAP and 75.1%
NDS for 3D object detection tasks, outperforming state-of-the-art methods
Inlet and Outlet Boundary Conditions and Uncertainty Quantification in Volumetric Lattice Boltzmann Method for Image-Based Computational Hemodynamics
Inlet and outlet boundary conditions (BCs) play an important role in newly emerged image-based computational hemodynamics for blood flows in human arteries anatomically extracted from medical images. We developed physiological inlet and outlet BCs based on patients’ medical data and integrated them into the volumetric lattice Boltzmann method. The inlet BC is a pulsatile paraboloidal velocity profile, which fits the real arterial shape, constructed from the Doppler velocity waveform. The BC of each outlet is a pulsatile pressure calculated from the three-element Windkessel model, in which three physiological parameters are tuned by the corresponding Doppler velocity waveform. Both velocity and pressure BCs are introduced into the lattice Boltzmann equations through Guo’s non-equilibrium extrapolation scheme. Meanwhile, we performed uncertainty quantification for the impact of uncertainties on the computation results. An application study was conducted for six human aortorenal arterial systems. The computed pressure waveforms have good agreement with the medical measurement data. A systematic uncertainty quantification analysis demonstrates the reliability of the computed pressure with associated uncertainties in the Windkessel model. With the developed physiological BCs, the image-based computation hemodynamics is expected to provide a computation potential for the noninvasive evaluation of hemodynamic abnormalities in diseased human vessels
Establishment of a recombinase polymerase amplification detection method for Puccinia striiformis f. sp. tritici
Abstract Wheat stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is an airborne disease that endangers wheat during its entire growth period. In this study, the Pst134EA_003354 uncharacterized protein (GenBank: XM_047941824.1) of Pst was used as the target sequence, and the primers PS-RPA-F and PS-RPA-R, as well as the probe PS-LF-probe, were designed for recombinase polymerase amplification (RPA) technology. Flow chromatography was combined with the process to establish an RPA detection method for Pst. This method successfully established visual detection within 10 min under a constant temperature of 39 °C, and the detection results were consistent with those of ordinary PCR analysis. However, it only had high specificity for Pst, and the detection limit was 10 fg/μL. In addition, this rapid method successfully detected Pst from wheat leaves during the field incubation period, indicating substantial benefits for applied use. In summary, the RPA detection method established in this study has the favourable characteristics of high efficiency, simple functionality, and rapid and universal practicability, providing a theoretical basis for the early detection and prevention of Pst
Detection of transgenic and endogenous plant DNA fragments and proteins in the digesta, blood, tissues, and eggs of laying hens fed with phytase transgenic corn.
The trials were conducted to assess the effects of long-term feeding with phytase transgenic corn (PTC) to hens on laying performance and egg quality, and investigate the fate of transgenic DNA and protein in digesta, blood, tissues, and eggs. Fifty-week old laying hens (n = 144) were fed with a diet containing 62.4% PTC or non-transgenic isogenic control corn (CC) for 16 weeks. We observed that feeding PTC to laying hens had no adverse effect on laying performance or egg quality (P>0.05) except on yolk color (P<0.05). Transgenic phyA2 gene and protein were rapidly degraded in the digestive tract and were not detected in blood, heart, liver, spleen, kidney, breast muscle, and eggs of laying hens fed with diet containing PTC. It was concluded that performance of hens fed diets containing PTC, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with CC. There was no evidence of phyA2 gene or protein translocation to the blood, tissues, and eggs of laying hens
PUPS: Point Cloud Unified Panoptic Segmentation
Point cloud panoptic segmentation is a challenging task that seeks a holistic solution for both semantic and instance segmentation to predict groupings of coherent points. Previous approaches treat semantic and instance segmentation as surrogate tasks, and they either use clustering methods or bounding boxes to gather instance groupings with costly computation and hand-craft designs in the instance segmentation task. In this paper, we propose a simple but effective point cloud unified panoptic segmentation (PUPS) framework, which use a set of point-level classifiers to directly predict semantic and instance groupings in an end-to-end manner. To realize PUPS, we introduce bipartite matching to our training pipeline so that our classifiers are able to exclusively predict groupings of instances, getting rid of hand-crafted designs, e.g. anchors and Non-Maximum Suppression (NMS). In order to achieve better grouping results, we utilize a transformer decoder to iteratively refine the point classifiers and develop a context-aware CutMix augmentation to overcome the class imbalance problem. As a result, PUPS achieves 1st place on the leader board of SemanticKITTI panoptic segmentation task and state-of-the-art results on nuScenes
Study on Mesoscopic Damage Evolution Characteristics of Single Joint Sandstone Based on Micro-CT Image and Fractal Theory
The different directions of joints in rock will lead to great differences in damage evolution characteristics. This study utilizes DIP (digital image processing) technology for characterizing the mesostructure of sandstone and combines DIP technology with RFPA2D. The mesoscale fracture mechanics behavior of 7 groups of jointed sandstones with various dip angles was numerically studied, and its reliability was verified through theoretical analysis. According to digital image storage principle and box dimension theory, the box dimension algorithm of rock mesoscale fracture is written in MATLAB, the calculation method of fractal dimension of mesoscale fracture was proposed, and the corresponding relationship between mesoscale fractal dimension and fracture damage degree was established. Studies have shown that compressive strength as well as elastic modulus of sandstone leads to a U-shaped change when joint dip increases. There are a total of six final failure modes of joint samples with different inclination angles. Failure mode and damage degree can be quantified by D (fractal dimension) and ω (mesoscale fracture damage degree), respectively. The larger the ω, the more serious the damage, and the greater the D, the more complex the failure mode. Accumulative AE energy increases exponentially with the increase of loading step, and the growth process can be divided into gentle period, acceleration period, and surge period. The mesoscale fracture damage calculation based on the fractal dimension can be utilized for quantitatively evaluating the spatial distribution characteristics of mesoscale fracture, which provides a new way to study the law of rock damage evolution
- …