40 research outputs found

    EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the risk posed by Shiga toxinproducing Escherichia coli (STEC) and other pathogenic bacteria in seeds and sprouted seeds

    Get PDF

    Re-evaluating the character and application of density-group index (DG)

    No full text

    The complete chloroplast genome of Ficus pumila, a functional plant in East Asia

    No full text
    Ficus pumila L. is a climbing fig commonly used as an ornamental plant. In this study, we sequenced and assembled the complete chloroplast genome of F. pumila. The complete chloroplast genome of F. pumila is 160,248 bp in length which includes a pair of inverted repeats (IRs) of 25,871 bp separated by a large single-copy (LSC) region of 88,405 bp and a small single-copy (SSC) region of 20,101 bp. The overall guanine–cytosine (GC) content of F. pumila cp genome is 35.98%, while the corresponding values of LSC, SSC, and IR sequences are 33.65, 29.05, and 42.65%, respectively. The phylogenetic tree was shown to be consistent with the traditional morphology-based taxonomy of Moraceae. Five plants from the genus Ficus formed a well-supported monophyletic clade with 100% bootstrap value, and F. pumila is closely related to F. hirta, F. carica, and F. racemosa, with a support value of 97%. The complete chloroplast of F. pumila contributes to the growing number of chloroplast genomes for phylogenetic and evolutionary studies in Moraceae

    The Cellulose Nanofibers for Optoelectronic Conversion and Energy Storage

    No full text
    Cellulose widely exists in plant tissues. Due to the large pores between the cellulose units, the regular paper is nontransparent that cannot be used in the optoelectronic devices. But some chemical and physical methods such as 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation can be used to improve the pores scale between the cellulose units to reach nanometer level. The cellulose nanofibers (CNFs) have good mechanical strength, flexibility, thermostability, and low thermal expansion. The paper made of these nanofibers represent a kind of novel nanostructured material with ultrahigh transparency, ultrahigh haze, conductivity, biodegradable, reproducible, low pollution, environment friendly and so on. These advantages make the novel nanostructured paper apply in the optoelectronic device possible, such as electronics energy storage devices. This kind of paper is considered most likely to replace traditional materials like plastics and glass, which is attracting widespread attention, and the related research has also been reported. The purpose of this paper is to review CNFs which are applied in optoelectronic conversion and energy storage

    The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    No full text
    This review summarizes recent studies on carbon nanotube (CNT) fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper

    Mathematical Simulation and Design of a Rectangular Cavity of Microwave Pretreatment Equipment Used for Wood Modification

    Get PDF
    Wood pretreated by high-intensity microwaves was theoretically studied based on the Maxwell electromagnetic field equations and the heat and mass transfer mechanism of wood. The effects of feeding modes on the temperature field uniformity and energy efficiency were studied using the finite element method, and optimized parameters of the rectangular microwave resonant cavity were achieved. The results show that the feeding modes had a great effect on the temperature field uniformity of the wood and the energy efficiency. Compared to the side single-port, the upper single-port, and the upper-under port feeding modes, the two-side ports feeding mode was the best for temperature field uniformity and energy efficiency

    Effects of Storage Temperature, Packaging Material and Wash Treatment on Quality and Shelf Life of Tartary Buckwheat Microgreens

    No full text
    Tartary buckwheat microgreens (TBM) are popular worldwide products but display an extremely short shelf life. Thus, the effects of storage temperature, packaging material, and wash treatment on the quality and shelf life were analyzed. Headspace composition, weight loss, electrolyte leakage, microbial population and sensory quality were investigated during storage. Results showed that shelf life and quality of TBM decreased with the increment of storage temperature when stored at 5–25 °C. During 5 °C storage, LDPE bags were the best packaging materials for preserving the quality of LDPE, PE and HDPE bags. On the basis of 5 °C and LDPE packages, ClO2 + citric acid wash treatment could further inhibit quality deterioration and extend the shelf life. The results demonstrated bioactive constituents and antioxidant capacity were significantly affected by storage time. The study provides insights into developing optimal packaging and storage conditions for TBM
    corecore