66 research outputs found

    An experimental investigation of supercritical CO2 accidental release from a pressurized pipeline

    Get PDF
    Experiments at laboratory scales have been conducted to investigate the behavior of the release of supercritical CO2 from pipelines including the rapid depressurization process and jet flow phenomena at different sizes of the leakage nozzle. The dry ice bank formed near the leakage nozzle is affected by the size of the leakage nozzle. The local Nusselt numbers at the leakage nozzle are calculated and the data indicate enhanced convective heat transfer for larger leakage holes. The mass outflow rates for different sizes of leakage holes are obtained and compared with two typical accidental gas release mathematical models. The results show that the “hole model” has a better prediction than the “modified model” for small leakage holes. The experiments provide fundamental data for the CO2 supercritical-gas multiphase flows in the leakage process, which can be used to guide the development of the leakage detection technology and risk assessment for the CO2 pipeline transportation

    A modelling study of the multiphase leakage flow from pressurised CO2 pipeline

    Get PDF
    The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed

    Microwave-assisted rapid preparation of hollow carbon nanospheres@TiN nanoparticles for lithium-sulfur batteries

    Get PDF
    Highly conductive titanium nitride (TiN) has a strong anchoring ability for lithium polysulfides (LiPSs). However, the complexity and high cost of fabrication limit their practical applications. Herein, a typical structure of hollow carbon nanospheres@TiN nanoparticles (HCNs@TiN) was designed and successfully synthesized via a microwave reduction method with the advantages of economy and efficiency. With unique structural and outstanding functional behavior, HCN@TiN-S hybrid electrodes display not only a high initial discharge capacity of 1097.8 mA h g−1 at 0.1C, but also excellent rate performance and cycling stability. After 200 cycles, a reversible capacity of 812.6 mA h g−1 is still retained, corresponding to 74% capacity retention of the original capacity and 0.13% decay rate per cycle, which are much better than those of HCNs-S electrodes

    Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries

    Get PDF
    Herein, we present a microwave reduction strategy for the synthesis of reduced-graphene-oxide (rGO) supported TiN nanoparticle hybrid (TiN/rGO) under N2 atmosphere. The method involves GO reduction, metal oxide reduction and nitridation reaction in one single step. Due to TiN high conductivity and good interfacial affinity between it and lithium polysulfides (LiPSs), the prepared TiN/rGO-Sulfur (TiN/rGO-S) cathodes demonstrate rapid charge transfer, lower polarization, faster surface redox reaction kinetic and enhanced stability cycling performance than rGO-Sulfur (rGO-S) and TiO2/rGO-Sulfur (TiO2/rGO-S) cathodes. The initial capacity reaches 1197.6 mA h g−1 with a reversible capacity of 888.7 mA h g−1 being retained after 150 cycles at 0.1 C

    Multimodal multiphoton imaging for label-free monitoring of early gastric cancer

    Get PDF
    Background Early gastric cancer is associated with a much better prognosis than advanced disease, and strategies to improve prognosis is strictly dependent on earlier detection and accurate diagnosis. Therefore, a label-free, non-invasive imaging technique that allows the precise identification of morphologic changes in early gastric cancer would be of considerable clinical interest. Methods In this study, multiphoton microscopy (MPM) using two-photon excited fluorescence combined with second-harmonic generation was used for the identification of early gastric cancer. Results This microscope was able to directly reveal improved cellular detail and stromal changes during the development of early gastric cancer. Furthermore, two features were quantified from MPM images to assess the cell change in size and stromal collagen change as gastric lesion developed from normal to early cancer. Conclusions These results clearly show that multiphoton microscopy can be used to examine early gastric cancer at the cellular level without the need for exogenous contrast agents. This study would be helpful for early diagnosis and treatment of gastric cancer, and may provide the groundwork for further exploration into the application of multiphoton microscopy in clinical practice.Ope

    Qwen Technical Report

    Full text link
    Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.Comment: 59 pages, 5 figure

    Phase Field Study of Microstructure Evolution in Eutectoid Phase Transformation – I Nucleation

    No full text
    Eutectoid growth, as the important reaction mechanism of the carbon steel heat treatment, is the basis to control the microstructure and performance. At present, most studies have focused on lamellar growth, and did not consider the nucleation process. Mainly due to the nucleation theory is inconclusive, a lot of research can support their own theory in a certain range. Based on the existing nucleation theory, this paper proposes a cooperative nucleation model to simulate the nucleation process of eutectoid growth. In order to ensure that the nucleation process is more suitable to the theoretical results, different correction methods were used to amend the model respectively. The results of numerical simulation show that when the model is unmodified, the lateral growth of single phase is faster than that of longitudinal growth, so the morphology is oval. Then, the effects of diffusion correction, mobility correction and ledges nucleation mechanism correction on the morphology of nucleation and the nucleation rate were studied respectively. It was found that the introduction of boundary diffusion and the nucleation mechanism of the ledges could lead to a more realistic pearlite

    The deviation from eutectic composition in boundary layer for eutectic growth: a phase-field study

    No full text
    In this paper, the deviation from eutectic composition in boundary layer for eutectic growth is studied by phase-field method. According to a series of artificial phase diagram, the lamellar eutectic growth of these alloy is simulated during directional solidification. At steady state, average growth velocity of eutectic lamella is equal to the pulling velocity. With the increasing of the liquidus slope of β phase, the average composition in boundary layer would deviate from eutectic composition and the deviation increases. The constitutional undercooling difference between both solid phases caused by the deviation increases with the increasing of the deviation. The β phase would develop a depression under the influence of the deviation

    Improved Catalytic Performance of Lipase Supported on Clay/Chitosan Composite Beads

    No full text
    Clay/chitosan composite beads were prepared and used as the carrier to support lipase by adsorption, to improve the activity and stability of lipase in the hydrolysis of olive oil. Under conditions of pH 6.0, 25 °C and adsorption for 10 h, immobilized lipases on chitosan bead (CB–lipase) and three clay/chitosan composite beads, at different clay to chitosan proportions of 1:8 (CCB-8-lipase), 1:5 (CCB-5-lipase) and 1:3 (CCB-3-lipase), were prepared. By comparing the activity of these immobilized lipases, CCB-5-lipase showed the highest activity, followed by CCB-8-lipase > CCB-3-lipase > CB-lipase; this improvement was attributed to the synergetic effect of enrichment of olive oil by clay at the reaction surface and better biocompatibility of chitosan with lipase molecules. The optimum pH and temperature in the reaction respectively changed from 7.0 and 30 °C for free lipase to 7.5 and 35 °C for immobilized forms. Furthermore, the thermal stability and repeated usability of these immobilized lipases were sequenced as CCB-3-lipase > CCB-5-lipase > CCB-8-lipase > CB–lipase, due to greater rigidity of immobilized lipase with the addition of clay, which was further confirmed by SEM. The study shows that the incorporation of clay with chitosan creates a good synergetic effect to improve the catalytic performance of immobilized lipase on clay/chitosan composite
    • …
    corecore