82 research outputs found
The Construction of a Clinical Decision Support System Based on Knowledge Base
Part 7: e-Health, the New Frontier of Service Science InnovationInternational audienceBased on a review of domestic and foreign research, application status, classification, composition, and the main problem of a clinical decision support system, this paper proposed a CDSS mode based on a knowledge base. On KB-CDSS mode, this paper discussed the architecture, principle, process, construction of the knowledge base, system design, and application value, then introduced the application WanFang Data Clinical Diagnosis and Treatment Knowledge Base
An Enhanced IEEE1588 Clock Synchronization for Link Delays Based on a System-on-Chip Platform
The clock synchronization is considered as a key technology in the time-sensitive networking (TSN) of 5G fronthaul. This paper proposes a clock synchronization enhancement method to optimize the link delays, in order to improve synchronization accuracy. First, all the synchronization dates are filtered twice to get the good calculation results in the processor, and then FPGA adjust the timer on the slave side to complete clock synchronization. This method is implemented by Xilinx Zynq UltraScale+ MPSoC (multiprocessor system-on-chip), using FPGA+ARM software and hardware co-design platform. The master and slave output Pulse Per-Second (PPS) signals. The synchronization accuracy was evaluated by measuring the time offset between PPS signals. Contraposing the TSN, this paper compares the performance of the proposed scheme with some previous methods to show the efficacy of the proposed work. The results show that the slave clock of proposed method is synchronized with the master clock, leading to better robustness and significant improvement in accuracy, with time offset within the range of 40 nanoseconds. This method can be applied to the time synchronization of the 5G open fronthaul network and meets some special service needs in 5G communication
An Enhanced IEEE1588 Clock Synchronization for Link Delays Based on a System-on-Chip Platform
The clock synchronization is considered as a key technology in the time-sensitive networking (TSN) of 5G fronthaul. This paper proposes a clock synchronization enhancement method to optimize the link delays, in order to improve synchronization accuracy. First, all the synchronization dates are filtered twice to get the good calculation results in the processor, and then FPGA adjust the timer on the slave side to complete clock synchronization. This method is implemented by Xilinx Zynq UltraScale+ MPSoC (multiprocessor system-on-chip), using FPGA+ARM software and hardware co-design platform. The master and slave output Pulse Per-Second (PPS) signals. The synchronization accuracy was evaluated by measuring the time offset between PPS signals. Contraposing the TSN, this paper compares the performance of the proposed scheme with some previous methods to show the efficacy of the proposed work. The results show that the slave clock of proposed method is synchronized with the master clock, leading to better robustness and significant improvement in accuracy, with time offset within the range of 40 nanoseconds. This method can be applied to the time synchronization of the 5G open fronthaul network and meets some special service needs in 5G communication
Experimental and Dynamic Study of the Piston Rod Lateral Friction for the Twin-Tube Hydraulic Shock Absorber
In this paper, dynamic loads acting on a twin-tube hydraulic shock absorber are derived out both in wheel and axle planes by modeling mechanically car rear suspensions, and internal and external forces that yield lateral surface damage and wear-out of the piston rod for the absorber are analyzed according to bench and real road test measures. From viewpoint of vehicle system dynamics and experiment, such key factors as road unevenness, very high car speed and severe shock induced vibrations are investigated, by which stochastic bending moments and dramatically increasing shock loading are introduced directly to the piston rod. From viewpoint of the whole car assembly, on the other hand, due to hardly perfectly placements of the piston rods in their positions between the car suspension and body, unacceptable manufacturing quality of the body may cause additional dynamic forces on the piston rod. Significant results obtained by theoretical and experimental analysis of lateral frictions of the piston rod are presented systematically for improving design of the shock absorber
Enhanced carbon uptake and reduced methane emissions in a newly restored wetland
Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 125(1), (2020): e2019JG005222, doi:10.1029/2019JG005222.Wetlands play an important role in reducing global warming potential in response to global climate change. Unfortunately, due to the effects of human disturbance and natural erosion, wetlands are facing global extinction. It is essential to implement engineering measures to restore damaged wetlands. However, the carbon sink capacity of restored wetlands is unclear. We examined the seasonal change of greenhouse gas emissions in both restored wetland and natural wetland and then evaluated the carbon sequestration capacity of the restored wetland. We found that (1) the carbon sink capacity of the restored wetland showed clear daily and seasonal change, which was affected by light intensity, air temperature, and vegetation growth, and (2) the annual daytime (8–18 hr) sustained‐flux global warming potential was −11.23 ± 4.34 kg CO2 m−2 y−1, representing a much larger carbon sink than natural wetland (−5.04 ± 3.73 kg CO2 m−2 y−1) from April to December. In addition, the results showed that appropriate tidal flow management may help to reduce CH4 emission in wetland restoration. Thus, we proposed that the restored coastal wetland, via effective engineering measures, reliably acted as a large net carbon sink and has the potential to help mitigate climate change.We would like to thank Yangtze Delta Estuarine Wetland Ecosystem Ministry of Education & Shanghai Observation and Research Station for providing sites during our research. This research was supported by the National Key Research and Development Program of China (Grant 2017YFC0506002), the National Natural Science Foundation of China Overseas and Hong Kong‐Macao Scholars Collaborative Research Fund (Grant 31728003), the China Postdoctoral Science Foundation (Grant 2018M640362), the Shanghai University Distinguished Professor (Oriental Scholars) Program (Grant JZ2016006), the Open Fund of Shanghai Key Lab for Urban Ecological Processes and Eco‐Restoration (Grant SHUES2018B06), and the Scientific Projects of Shanghai Municipal Oceanic Bureau (Grant 2018‐03). The complete data set is available at https://data.4tu.nl/repository/uuid:536b2614‐c4ca‐43d2‐84dd‐6180fd859544
Natural polysaccharide-based hydrogel bioprinting for articular cartilage repair
Tissue engineering represents a promising approach for impaired articular cartilage tissue regeneration. 3D printed hydrogels have become an emerging tissue engineering strategy because they closely mimic the physical and biochemical characteristics of the extracellular matrix. The formulation of hydrogel ink holds significant importance in attaining a precisely defined scaffold, which could exhibit excellent shape fidelity post-printing. Natural polysaccharide-based hydrogels are a highly promising class of scaffold biomaterials for articular cartilage regeneration in the field of material science and tissue engineering. These hydrogels are particularly advantageous due to their exceptional water absorption capacity, biodegradability, adjustable porosity, and biocompatibility, which closely resemble those of the natural extracellular matrix. This review aims to provide a comprehensive overview of the key characteristics, functions, and research progress in 3D printing technology for natural polysaccharide-based hydrogels. Specifically, this review categorizes the commonly used natural polysaccharide-based hydrogel materials in cartilage tissue engineering, and summarizes the classic literature in this area. In the end, we provide a comprehensive analysis of the challenges and potential applications of natural polysaccharide-based hydrogels in cartilage tissue engineering
Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests : a cross-platform comparison
© The Author(s), 2018. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science of The Total Environment 644 (2018): 439-451, doi:10.1016/j.scitotenv.2018.06.269.Characterized by the noticeable seasonal patterns of photosynthesis, mid-to-high latitude forests are sensitive to climate change and crucial for understanding the global carbon cycle. To monitor the seasonal cycle of the canopy photosynthesis from space, several remote sensing based indexes, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and leaf area index (LAI), have been implemented within the past decades. Recently, satellite-derived sun-induced fluorescence (SIF) has shown great potentials of providing retrievals that are more related to photosynthesis process. However, the potentials of different canopy measurements have not been thoroughly assessed in the context of recent advances of new satellites and proposals of improved indexes. Here, we present a cross-site intercomparison of one emerging remote sensing based index of phenological index (PI) and two SIF datasets against the conventional indexes of NDVI, EVI and LAI to capture the seasonal cycles of canopy photosynthesis. NDVI, EVI, LAI and PI were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, while SIF were evaluated from Global Ozone Monitoring Experiment-2 (GOME-2) and Orbiting Carbon Observatory-2 (OCO-2) observations. Results indicated that GOME-2 SIF was highly correlated with gross primary productivity (GPP) and absorbed photosynthetically active radiation (APAR) during the growing seasons. Key phenological metrics captured by SIF from GOME-2 and OCO-2 matched closely with photosynthesis phenology as inferred by GPP. However, the applications of OCO-2 SIF for phenological studies may be limited only for a small range of sites (at site-level) due to a limited spatial sampling. Among the MODIS estimations, PI and NDVI provided most reliable predictions of start of growing seasons, while no indexes accurately captured the end of growing seasons.This work was supported by the Chinese Arctic and Antarctic Administration, National Natural Science Foundation of China (Grant Nos. 41676176 and 41676182), the Chinese Polar Environment Comprehensive Investigation, Assessment Program (Grant No. 312231103). This work was also supported by the Fundamental Research Funds for the 440 Central Universities2020-07-1
Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China
The spatio-temporal variations of soil gas in the seismic fault zone produced by the 12 May 2008 Wenchuan Ms 8.0 earthquake were investigated based on the field measurements of soil gas concentrations after the main shock. Concentrations of He, H2, CO2, CH4, O2, N2, Rn, and Hg in soil gas were measured in the field at eight short profiles across the seismic rupture zone in June and December 2008 and July 2009. Soil-gas concentrations of more than 800 sampling sites were obtained. The data showed that the magnitudes of the He and H2 anomalies of three surveys declined significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H2 (40 and 279.4 ppm, respectively) were found in three replicates at the south part of the rupture zone close to the epicenter. The spatio-temporal variations of CO2, Rn, and Hg concentrations differed obviously between the north and south parts of the fault zone. The maximum He and H2 concentrations in Jun 2008 occurred near the parts of the rupture zone where vertical displacements were larger. The anomalies of He, H2, CO2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activity
Functional Analysis of Host Factors that Mediate the Intracellular Lifestyle of Cryptococcus neoformans
Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interference (RNAi) to define and characterize Cn host factors. The system recapitulated salient aspects of fungal interactions with mammalian cells, including phagocytosis, intracellular trafficking, replication, cell-to-cell spread and escape of the pathogen from host cells. Fifty-seven evolutionarily conserved host factors were identified using this system, including 29 factors that had not been previously implicated in mediating fungal pathogenesis. Subsequent analysis indicated that Cn exploits host actin cytoskeletal elements, cell surface signaling molecules, and vesicle-mediated transport proteins to establish a replicative niche. Several host molecules known to be associated with autophagy (Atg), including Atg2, Atg5, Atg9 and Pi3K59F (a class III PI3-kinase) were also uncovered in our screen. Small interfering RNA (siRNA) mediated depletion of these autophagy proteins in murine RAW264.7 macrophages demonstrated their requirement during Cn infection, thereby validating findings obtained using the Drosophila S2 cell system. Immunofluorescence confocal microscopy analyses demonstrated that Atg5, LC3, Atg9a were recruited to the vicinity of Cn containing vacuoles (CnCvs) in the early stages of Cn infection. Pharmacological inhibition of autophagy and/or PI3-kinase activity further demonstrated a requirement for autophagy associated host proteins in supporting infection of mammalian cells by Cn. Finally, systematic trafficking studies indicated that CnCVs associated with Atg proteins, including Atg5, Atg9a and LC3, during trafficking to a terminal intracellular compartment that was decorated with the lysosomal markers LAMP-1 and cathepsin D. Our findings validate the utility of the Drosophila S2 cell system as a functional genomic platform for identifying and characterizing host factors that mediate fungal intracellular replication. Our results also support a model in which host Atg proteins mediate Cn intracellular trafficking and replication
- …