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Abstract 15 

Characterized by the noticeable seasonal patterns of photosynthesis, mid-to-high latitude 16 

forests are sensitive to climate change and crucial for understanding the global carbon cycle. 17 

To monitor the seasonal cycle of the canopy photosynthesis from space, several remote 18 

sensing based indexes, such as normalized difference vegetation index (NDVI), enhanced 19 

vegetation index (EVI) and leaf area index (LAI), have been implemented within the past 20 

decades. Recently, satellite-derived sun-induced fluorescence (SIF) has shown great 21 

potentials of providing retrievals that are more related to photosynthesis process. However, 22 

the potentials of different canopy measurements have not been thoroughly assessed in the 23 

context of recent advances of new satellites and proposals of improved indexes. Here, we 24 

present a cross-site intercomparison of one emerging remote sensing based index of 25 

phenological index (PI) and two SIF datasets against the conventional indexes of NDVI, EVI 26 

and LAI to capture the seasonal cycles of canopy photosynthesis. NDVI, EVI, LAI and PI 27 

were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) 28 

measurements, while SIF were evaluated from Global Ozone Monitoring Experiment-2 29 

(GOME-2) and Orbiting Carbon Observatory-2 (OCO-2) observations. Results indicated that  30 

GOME-2 SIF was highly correlated with gross primary productivity (GPP) and absorbed 31 

photosynthetically active radiation (APAR) during the growing seasons. Key phenological 32 

metrics captured by SIF from GOME-2 and OCO-2 matched closely with photosynthesis 33 

phenology as inferred by GPP. However, the applications of OCO-2 SIF for phenological 34 

studies may be limited only for a small range of sites (at site-level) due to a limited spatial 35 

sampling. Among the MODIS estimations, PI and NDVI provided most reliable predictions 36 

of start of growing seasons, while no indexes accurately captured the end of growing seasons. 37 

Keywords: Phenology, remote sensing, photosynthesis, OCO-2, SIF, NDVI, EVI, PI, LAI. 38 

1. Introduction  39 

Terrestrial ecosystems play an important role in regulating regional and global climate 40 

(Burrows et al., 2011). Mid-to-high latitude forests, especially the boreal forests, are 41 
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substantial contributors to carbon fluxes (Beer et al., 2010; Rolleston, 1996). As plants in 42 

these regions are expected to experience the greatest warming among forest biomes, they are 43 

deemed to react and respond sensitively to climate change and variability (Kurz et al., 1995). 44 

Despite the important roles of mid-to-high latitude forests in the global carbon cycle, it 45 

remains challenging to monitor and model the physiological processes such as 46 

photosynthesis. 47 

Mid-to-high latitude forests are showing noticeable seasonal cycles of photosynthesis, 48 

which are sensitive indicators of the biosphere’s response to climate changes through 49 

contributions to the global carbon, energy and water cycles (Buitenwerf et al., 2015; Peñuelas 50 

et al., 2009). Understanding the changes of these cycles as well as the underlying 51 

mechanisms are of significance for predicting future changes of climate and the global carbon 52 

cycle. Recent in-situ and remote sensing based studies have shown that the warming climate 53 

has triggered lengthier growing seasons in northern hemisphere regions (Cleland et al., 2007; 54 

Viña et al., 2016; Wang et al., 2015). Remote sensing based approaches to estimate 55 

phenological metrics (e.g., the start and end of growing seasons) were mainly based on 56 

reflectance-calculated vegetation indexes (VIs), such as normalized difference vegetation 57 

index (NDVI), enhanced vegetation index (EVI) and leaf area index (LAI) retrieved using 58 

these VIs (Tang et al., 2016). These indexes have been applied to regional and global studies, 59 

especially for the regions without long-term ground observations. However, performance of 60 

VIs is significantly hindered by snow cover and soil moisture (D’Odorico et al., 2015b; Peng 61 

et al., 2017; Wu et al., 2017). Several improved indexes including phenological index (PI) 62 

that aimed at the matches between remotely sensed and ground observed seasonal cycles of 63 

canopy photosynthesis have been proposed. PI combines NDVI and Normalized Difference 64 

Infrared Index (NDII) to decouple the seasonality of the green vegetation component from 65 

that of the background because green-up co-occurs with snow melt (Delbart et al., 2005; 66 

Gonsamo et al., 2012a). Yet, the biological recovery and dormancy of trees for evergreen 67 

forests are still extremely difficult to identify during the transition period when the greenness 68 
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signal of the vegetation is weak or does not necessarily correspond with the shifts of 69 

photosynthesis (Wong and Gamon, 2015).  70 

Alternatively, chlorophyll pigments absorb photons to power photosynthesis, with some 71 

of the photons re-emitted at longer wavelengths as chlorophyll fluorescence (Baker, 2008). 72 

The re-emitted sun-induced fluorescence (SIF) has been successfully related to downward 73 

carbon flux, i.e., carbon uptake by the vegetation. This provides a promising way in 74 

estimating photosynthesis through SIF. Global SIF datasets using space-borne spectroscopy 75 

from satellites became available past few years (Frankenberg et al., 2014; Guanter et al., 2013; 76 

Guanter et al., 2014; Joiner et al., 2013; Joiner et al., 2016; Köhler et al., 2015). Despite the 77 

complex processes underlying the relationships between SIF and gross primary production 78 

(GPP), it has been reported the satellite-retrieved SIF was highly correlated with GPP 79 

estimated based on eddy covariance (EC) flux towers (van der Tol et al., 2014; Yang et al., 80 

2017; Yang et al., 2015; Zhang et al., 2016b). Their relationships appear to reflect the level of 81 

APAR as well as light use efficiency (LUE). Based on more than 50 global EC towers, Joiner 82 

et al. (2014) found that the Global Ozone Monitoring Experiment-2 (GOME-2) SIF retrieved 83 

phenological metrics matched closely with that of EC-based estimations despite the imperfect 84 

matches of spatial and temporal representativeness. Walther et al. (2016) found that GOME-2 85 

SIF decoupled growing seasons can be up to 8 weeks longer than that captured by EVI. Jeong 86 

et al. (2017) evaluated remotely sensed SIF and NDVI of several platforms and proposed that 87 

the continued measurements of SIF and NDVI would help us understand the seasonal 88 

variations of vegetation photosynthesis and greenness. However, the coarse spatial 89 

representativeness of previous atmospheric measurements (~ 40 km by 80 km or coarser) 90 

makes it difficult to compare with ground-based canopy measurements (Chen et al., 2012; 91 

Joiner et al., 2014; Zhang et al., 2016b). Very recently, Orbiting Carbon Observatory (OCO-2) 92 

has shown renewed promises of satellite-derived fluorescence with the improved spatial 93 

representativeness at around 1.3 km by 2.25 km (Frankenberg et al., 2014; Sun et al., 2017). 94 

The similar footprints of OCO-2 that match the spatial representativeness of most EC towers 95 

enables it to produce more sounding results (Lu et al., 2018; Verma et al., 2017). The 96 



 5 

emerging observations from OCO-2, however, have rarely been applied in phenological 97 

studies (Köhler et al., 2017). 98 

Our primary objective is to evaluate and compare the seasonal cycles of several remotely 99 

sensed canopy measurements. An additional objective is to focus on phenological transition 100 

dates derived from different measurements, which are indicators directly related to the carbon 101 

budgets of terrestrial ecosystems. 102 

2. Materials and Methods  103 

2.1 Selection of EC sites 104 

We conducted this study at 15 EC sites (103 site-years) in North America and Europe 105 

where relatively homogeneous landscapes exist around the flux towers. These sites represent 106 

three main forest biomes in mid-to-high latitude forests such as evergreen needleleaf forests 107 

(ENF), deciduous broadleaf forests (DBF) and mixed forests (MF) (Fig. 1 and Table 1). The 108 

selection of EC sites was based on an assumption of threshold of International 109 

Geosphere-Biosphere Program (IGBP) classifications (Loveland et al., 2000). In principle, 110 

we chose sites where >60% of the GOME-2 grid areas around each flux tower matched with 111 

the biome for the corresponding site. MODIS land cover products (MCD12Q1) and previous 112 

studies on several homogeneous sites were used as references for our site selection (Zhang et 113 

al., 2016a). For some sites, MODIS grids classified as mixed forests around the tower were 114 

not distinct from ENF or DBF grids. EC measurements were downloaded from the European 115 

Fluxes Database Cluster (http://gaia.agraria.unitus.it/) and Fluxnet 116 

(http://fluxnet.fluxdata.org/).  117 

We used gap-filled including air temperature, downward shortwave radiation (SWIN) and 118 

CO2 fluxes. The daily composites were resampled every 8 days with an average over the 119 

16-day period. Quality flags and/or standard errors were screened for all analysed parameters 120 

to ensure that only the most reliable estimations remained. Photosynthetically active radiation 121 

(PAR) was calculated as 0.45 of SWIN for all sites. The conversion factor of 0.45 has been 122 

widely applied in cross-site studies (Jin et al., 2015). To partition net ecosystem exchange 123 

http://gaia.agraria.unitus.it/
http://fluxnet.fluxdata.org/
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(NEE) into GPP and ecosystem respiration, we follow the night-time partitioning method 124 

(Reichstein et al., 2005). 125 

A modelling estimations of GPP with the same spatial representativeness of GOME-2 SIF 126 

from FLUXCOM were referred to in this study (Jung et al., 2009; Tramontana et al., 2016). 127 

Based on remote sensing and meteorological data, this set used several machine-learning 128 

algorithms to upscale flux tower estimations to the global scale. The seasonal cycles of this 129 

dataset have been proved to be correlated with ground observations (Tramontana et al., 2016). 130 

We averaged the outcomes of six algorithms , i.e., three machine-learning algorithms by two 131 

partitioning methods, and then resampled the composites every 8 days with an average over 132 

the 16-day period. 133 
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 134 

Figure 1. Spatial distributions of the 15 mid-to-high latitude forests in North America (a) and 135 

Europe (b). The figure was generated using ArcMap 10.2 (http://www.esri.com/). 136 
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Table 1. Basic information and descriptions of EC flux sites. Among all sites, eddy measurements of sites CZ-BK1, DK-Sor, FI-Sod, IT-Lav, and RU-Fyo were 137 

downloaded from the European Fluxes Database Cluster, while measurements from other sites were obtained from the FLUXNET. Year denotes the 138 

corresponding time of the measurements, Type indicates land cover type, and Max_LC is the percent of dominant vegetation cover within the GOME-2 grid 139 

calculated for each site. OCO-2 indicates whether this site was selected for comparisons with OCO-2 measurements. 140 

Site Lat. Lon. Site Name Year Type Max_LC OCO-2 References 

CA-Gro 48.2167 −82.1556 Canada-Ontario 4 2007–2014 MF 90 Yes Mccaughey et al. (2006) 

CA-Oas 53.6289 −106.1978 SK-Old Aspen 2007–2010 DBF 60 Yes Barr et al. (2002) 

CA-Obs 53.9872 −105.1178 SK-Southern Old Black Spruce 2007–2010 ENF 88 No Bond-Lamberty et al. (2004) 

CA-Qfo 49.6925 −74.3421 Eastern Boreal, Mature Black 

Spruce 

2007–2010 ENF 71 No Bergeron et al. (2007) 

CZ-BK1 49.5021 18.5369 Bily Kriz- Beskidy Mountains 2007–2014 DBF 60 No Staudt and Foken (2008) 

FI-Hyy 61.8475 24.295 Finland-Hyytiala 2007–2014 ENF 93 No Suni et al. (2003) 

FI-Sod 67.3619 26.6378 Sodankyla 2007–2014 ENF 99 No Tanja et al. (2003) 

IT-Lav 45.9562 11.2813 Italy-Lavarone 2007–2014 ENF 60 Yes Marcolla et al. (2003) 

RU-Fyo 56.4615 32.9221 Russia-Fyodorovskoye dry 

spruce 

2007–2014 ENF 95 Yes Milyukova et al. (2002) 

US-Ha1 42.5378 −72.1715 Harvard Forest EMS Tower 

(HFR1) 

2007–2012 DBF 91 No Urbanski et al. (2007) 

US-MMS 39.3232 −86.4131 Morgan Monroe State Forest 2007–2014 DBF 91 No Dragoni et al. (2011) 

US-PFa 45.9459 −90.2723 USA-Park Falls 2007–2014 MF 78 Yes Desai (2014) 

US-Prr 65.1237 −147.4876 Poker Flat Res. Range Black 2010–2014 ENF 87 No Nakai et al. (2013) 
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Spruce 

US-Syv 46.242 −89.3477 USA-Sylvania Wilderness Area 2007–2014 MF 93 No Desai et al. (2005) 

US-WCr 45.8059 −90.0799 USA-Willow Creek 2007–2014 DBF 95 Yes Cook et al. (2004) 
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2.2 Satellite-derived SIF 141 

We used satellite-derived SIF data derived from the GOME-2 instrument on-board 142 

MetOp-A platform (ftp://fluo.gps.caltech.edu/data/Philipp/GOME-2) which initially 143 

measured backscattered sunlight in a nadir-viewing geometry at wavelengths between 270 144 

and 790 nm in four separate channels. Its fourth channel (590-790 nm) encompassed a range 145 

of wavelengths of emitted SIF. This dataset used a linear method to retrieve SIF at 740 nm 146 

(Köhler et al., 2015). The SIF dataset was gridded with a spatial resolution of 0.5 degrees 147 

after normalizing to the daily averages. We regridded daily retrievals centered at each site 148 

using the bilinear interpolation algorithm (Press et al.). Then the daily estimations were 149 

resampled every 8 days with an average over the 16-day. As expected, the spatial 150 

representativeness of GOME-2 SIF data mismatched with that of most EC towers. 151 

Consequently, we applied the remotely sensed fluorescence from OCO-2 that was launched 152 

on July 2, 2014. The relatively small footprints of instruments of OCO-2 (~1.3 km by 2.25 153 

km) made it possible to produce the first satellite-derived SIF dataset that better matches with 154 

the EC-based estimations. Since OCO-2 has spectrally high resolved measurements in the O2 155 

A-band, it is capable of retrieving SIF centered at 757 nm and 771 nm accurately 156 

(Frankenberg et al., 2014). The SIF at 771 nm is relatively weaker than that at 757 nm, thus 157 

we averaged the records of two bands after scaling the values at 771 nm with a factor of 1.4 158 

(Verma et al., 2017). 159 

There are several differences between satellite-derived SIF from the two instruments. 160 

Firstly, the retrieved SIF centered at 740 nm for GOME-2 and 757 nm (771 nm) for OCO-2. 161 

Secondly, unlike the global continuous measurements of GOME-2, the strategies of spatial 162 

sampling of OCO-2 are sparse, with only a few sites in this study to have sufficient times of 163 

overpass that can be used to quantify the seasonal patterns. Additionally, the overpass times 164 

of the two satellites differ from each other, i.e., morning for GOME-2 and noon for OCO-2. 165 

As results, only 6 EC sites with most observations from OCO-2 were selected for 166 

comparisons (Table 1). The search radius of OCO-2 SIF data was set at 10 km following the 167 

similar protocols of Verma et al. (2017) and Luus et al. (2017). For OCO-2 SIF, we used the 168 

daily correction factor provided within the files to convert the instantaneous values to daily 169 

averages. The measurements of FLUXNET and European Flux Data Cluster only updated to 170 

ftp://fluo.gps.caltech.edu/data/Philipp/GOME-2
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2014 for most sites. We merged the values from OCO-2 from late 2014 to 2016 into a year by 171 

the corresponding day of the year of the measurements for comparisons with EC-based 172 

estimations in 2014. 173 

2.3 Surface reflectance and FPAR/LAI 174 

To calculate NDVI, EVI and PI, bidirectional reflectance distribution function (BRDF) 175 

adjusted surface reflectance derived the MODIS instruments were obtained from Oak Ridge 176 

National Laboratory's Distributed Active Archive Center (MCD43A4, V005, with a spatial 177 

resolution of 500 m,combined from Terra and Aqua) (Attard et al., 2016). In this data set, the 178 

values of reflectance were normalized to nadir, cloud-free, atmospherically corrected 179 

measurements based on the bidirectional reflectance distribution function, and were attributed 180 

into a 16-day series with a sampling of every 8 days. The MCD43 series data sets used a 181 

separate product (MCD43A2) in simplified form to store quality information. The layer of 182 

“BRDF_Albedo_Quality” indicated the quality of the BRDF-adjusted reflectance. We only 183 

used the measurements labelled as "best" and "good" in quality. 184 
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Table 2. A summary of all datasets used in this study. The description, size of footprint, period and references are provided as the references. 185 

Dataset Description Footprint Period Reference 

Fluxnet 2015 Flux measurements at multiple sites Typically 500 m to 1 km 2007-2014 Baldocchi et al. (2001) 

European Flux 

Database Cluster 

Flux measurements at multiple European sites Typically 500 m to 1 km 2007-2014 Sulkava et al. (2015) 

Fluxcom An upscaled modeling GPP data set 0.5 degrees 2007-2013 Jung et al. (2011)  

GOME-2 SIF Satellite-derived SIF from GOME-2 40 km by 80 km 2007-2014 Köhler et al. (2015) 

OCO-2 SIF Satellite-derived SIF from OCO-2 1.3 x 2.25 km 2014-2016 Frankenberg et al. (2014)  

MOD15A2 Level 4 product of FPAR & LAI 1 km 2007-2014 Myneni et al. (2002) 

MCD43A4 MODIS Nadir BRDF-Adjusted Reflectance 

surface reflectance 

500 m 2007-2014 Attard et al. (2016) 
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We used the level 4 product of the Fraction of Photosynthetically Active Radiation (FPAR) 186 

and the LAI from the Oak Ridge National Laboratory's Distributed Active Archive Center 187 

(MOD15A2, V005, with a spatial resolution of 1000 m, from MODIS Terra) (Fretwell et al., 188 

2012; Myneni et al., 2002). For product MOD15A2, retrievals were targeted towards 189 

consistency with field measurements over all biomes but with a major focus on woody 190 

vegetation. We resampled the measurements every 8 days with an average over the 16-day. 191 

2.4 Computations of Vegetation Indexes and Phenological Indexes 192 

To proxy green biomass, the red, blue, near-infrared and shortwave-infrared surface 193 

reflectance from the MCD43A4 product with the exact acquisition dates were used to 194 

compute the EVI, NDVI, and PI. The EVI and NDVI were calculated as (Gonsamo et al., 195 

2012b; Huete et al., 2002; Rouse et al., 1974): 196 

EVI = 2.5 ×
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+(6×𝜌𝑛𝑖𝑟−7×𝜌𝑏𝑙𝑢𝑒)−1
                           (1) 197 

NDVI =
𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
                                   (2) 198 

NDVI and NDII were integrated to calculate PI (Delbart et al., 2005; Gonsamo et al., 199 

2012a). NDII responds to land surface moisture and snow cover and can thus capture the 200 

seasonal trajectories of snow cover. The PI was derived from the product of the sum and the 201 

difference of NDVI and NDII as (Delbart et al., 2005; Gonsamo et al., 2012a): 202 

NDII =
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
                                  (3) 203 

PI = {

0, 𝑖𝑓 𝑁𝐷𝑉𝐼 < 0 𝑜𝑟 𝑁𝐷𝐼𝐼 < 0
(𝑁𝐷𝑉𝐼 + 𝑁𝐷𝐼𝐼) × (𝑁𝐷𝑉𝐼 − 𝑁𝐷𝐼𝐼)

0, 𝑖𝑓 𝑃𝐼 < 0 
                       (4) 204 

2.5 The linear model and hyperbolic model for illustrating the SIF-GPP relationships 205 

  The relationships between SIF and canopy photosynthesis can be complex, several 206 

previous studies pointed out that their relationships can be nonlinear (Damm et al., 2010; 207 

Damm et al., 2015; Li et al., 2017; Yang et al., 2016; Zhang et al., 2016a). Damm et al. (2015) 208 

and Li et al. (2017) proposed that a hyperbolic model may outperform the linear model when 209 

analysing the relationships between SIF and GPP. In this study, we used the linear model as 210 

well as the hyperbolic (nonlinear) model to analyse the relationships between SIF and GPP. 211 
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The hyperbolic model assumed that the SIF-GPP relationships can be nonlinear as LUE can 212 

be expressed by a hyperbolic function of APAR. This simplified model can be expressed as 213 

follow (Li et al., 2017): 214 

GPP = 𝐺𝑃𝑃𝑚𝑎𝑥 ×
𝑆𝐼𝐹

𝑆𝐼𝐹+𝑏
                            (5) 215 

  Where GPPmax represents the maximum of a GPP dataset and b was a parameter related to 216 

SIFyield (SIF divided by APAR). 217 

2.6 Determinations of phenological metrics 218 

We used the curve fitting method to objectively determine phenological metrics 219 

(Gonsamo et al., 2012b). 220 

𝑋(𝑡) = 𝑎1 +
𝑎2

1+exp (−𝑑1(𝑡−𝑏1))
−

𝑎3

1+exp(−𝑑2(𝑡−𝑏2))
                   (6) 221 

Equation (6) was fitted to all measurements, where X(t) is the input time series (e.g., 222 

GOME-2 SIF), and a1, a2, a3, b1, b2, d1, and d2 are the empirical coefficients to be 223 

estimated. Weighting-scheme based least-squares curve fitting was applied by starting from a 224 

first guess of the seven functions and solving with a maximum of 2000 iterations. A 225 

four-point moving window approach was used to reduce the effect of low-quality data points 226 

by assigning the values less than half or more than twice of its associated median values with 227 

lower weights. For NDVI, we referred to the midpoints of b1 and b2 as the start of seasons 228 

(SOS) and end of seasons (EOS) as previous studies found that the midpoint-days of NDVI 229 

are strongly connected with leaf-unfolding process for deciduous forests in North America 230 

and China (D’Odorico et al., 2015a; Luo et al., 2014). For other observations, the 231 

phenological metrics were determined as (Gonsamo et al. (2012a): 232 

𝑆𝑂𝑆 = 𝑏1 −
4.562

2𝑑1
                                (7) 233 

𝐸𝑂𝑆 = 𝑏2 +
4.562

2𝑑2
                                (8) 234 

Because of the limited observations of OCO-2 SIF, it can be problematic to retrieve 7 free 235 

parameters. Based on an assumption that the basing values of SIF at spring and autumn are 236 

comparable that should be very close to 0 in theory, we simplified the models by using the 237 

same value for a1 and a2 by assuming that the biophysical environments are similar in 238 

non-growing seasons. 239 
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3. Results 240 

3.1 Relationships between the measurements of GOME-2 SIF and EC towers 241 

The relationships between satellite-derived SIF and canopy photosynthesis during the 242 

growing seasons were explored firstly through linear regression analysis (Fig. 2). We found 243 

that the seasonal patterns of SIF correlated highly with EC-based estimations of GPP (GPPEC), 244 

with the correlation coefficient of determination (R2) ranged from 0.53 to 0.74. Despite our 245 

efforts in identifying the EC sites with relatively homogeneous landscapes around the tower, 246 

the GOME-2 SIF products were generated within the huge grids. Because the GOME-2 SIF 247 

and upscaled GPP (GPPupscaled) have the similar spatial representativeness, relatively higher 248 

average R2 values ranging from 0.63 to 0.74 occurred in this study (compared with 249 

correlations between SIF and GPPEC). Finally, SIF correlated well with APAR (MODIS 250 

FPAR×PAR), with the R2 ranging from 0.41 to 0.59. 251 

Then, we applied the hyperbolic model to estimate the relationships between GOME-2 252 

SIF and canopy photosynthesis (Fig. 2). In all cases, interestingly, the hyperbolic 253 

outperformed the linear model slightly. The coefficients of determination showed an increase 254 

of 0.08 to 0.27 when using the hyperbolic model. Especially, when looking at the 255 

relationships between SIF and GPPupscaled in DBF and MF, a linear model seems to be 256 

inappropriate since there existed obvious saturation effects of photosynthesis in GPPupscaled 257 

for DBF and MF when comparing against SIF. 258 
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 259 

Figure 2. Seasonal correlations between GOME-2 SIF and canopy photosynthesis in 260 

different forest biomes. The red line represents the linear model, while the green line shows 261 

the hyperbolic model. The coefficients of determination of linear (red texts) and hyperbolic 262 

models (green texts) are remarked. 263 

The seasonal trajectories of SIF, GPPEC, PAR, APAR, and EVI×PAR with averaged and 264 

normalized values for all sites are shown in Fig. 3. SIF and GPPEC showed closed spring 265 

onset and autumn senescence/abscission. However, APAR had relatively different seasonal 266 

trajectories from SIF, with an earlier spring onset. For autumn senescence/abscission, SIF, 267 

GPPEC, and APAR seemed to cease at a similar time (e.g., CA-Oas and CA-Obs). Since the 268 

estimations of APAR based on MODIS FPAR seemed imperfect, we used an alternative 269 

method to quantify APAR based on MODIS-derived EVI (Liu et al., 2017; Xiao et al., 2004a; 270 
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Xiao et al., 2004b). This method used EVI to estimate the seasonal cycles of chlorophyll 271 

absorbed PAR. We found that EVI×PAR showed a seasonal cycle that was more consistent 272 

with GPPEC and SIF (e.g., US-Syv).  273 

 274 

Figure 3. Seasonal trajectories of normalized GOME-2 SIF, PAR, APAR, EVI×PAR, and 275 

GPPEC of the 15 sites. 276 

3.2 Phenological metrics captured by different satellites 277 

Although GOME-2 SIF datasets had mismatched spatial representativeness compared 278 

with tower-based estimations, we speculated that SIF-captured phenological metrics can be 279 

used as a reference indicator of the spring and autumn dynamics at a large-scale.  280 

Results indicated that SOS and EOS derived using VIs, LAI and SIF were comparable but 281 

not equivalent (Figs. 4 and 5). Overall, the estimations of all remotely sensed approaches 282 

were significantly correlated with that determined by GPPEC (p<0.05). For both the start and 283 

end of growing seasons, GOME-2 SIF provided the most reliable estimations, with highest R2 284 

(0.67 for SOS and 0.52 for EOS) and lowest RMSEs (12.36 days for SOS and 11.64 days for 285 
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EOS). The regression slope was more close to 1 as well. For the other four MODIS based 286 

indexes, the remotely sensed phenological metrics and EC estimated seasonal cycles showed 287 

weaker correlations, with the overall R2 <0.4. For delineating the start of growing seasons, 288 

MODIS NDVI and PI had most accurate predictions (R2 were 0.46 and 0.43 respectively). 289 

Other MODIS based indexes showed less promising results, with an overall R2 below 0.3. 290 

For autumn onset, the remotely sensed vegetation indexes seemed to be humped, with the R2 291 

of <0.1 for MODIS NDVI, and R2 of < 0.4 for other indexes. 292 

In DBF, GOME-2 SIF tracked the spring onset and autumn senescence/abscission 293 

accurately (Fig. 5). Both GOME-2 SIF and EC based estimations of GPPEC showed that the 294 

growing seasons started from early-to-middle April and ceased in late October, with PI and 295 

NDVI tended to predict longer growing seasons. In ENF, SIF produced a later spring onset by 296 

a few weeks but tracked the autumn senescence/abscission accurately. PI and NDVI seemed 297 

to match the growing seasons, while EVI predicted longer growing seasons. In MF, both SIF 298 

and PI matched the spring onset and autumn senescence/abscission. For both ENF and DBF, 299 

MODIS LAI yielded shorter growing seasons. 300 
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 301 

Figure 4. Relationships between remotely sensed phenological metrics and observed 302 

photosynthesis metrics determined by EC measurements. The equations and correlation 303 

coefficients of determination are shown. The number of sites used (N) and the RMSEs of the 304 

linear regressions are also provided for each site, and the error bars are the standard 305 

deviations of interannual variations. The absence of error bars indicates that the approaches 306 

shared only one year of retrievals, and dashed lines represent the 1:1 lines. 307 
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 308 

Figure 5. The start and end of the growing seasons determined by different remote sensing 309 

measurements and EC measurements. For each data source, the central mark represents the 310 

median values, the edges of the box are the 25th and 75th percentiles, and the whiskers 311 

extend to the most extreme data points, i.e., 5th and 95th percentiles, that were not 312 
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considered. 313 

We found that OCO-2 SIF captured phenological metrics were close to that of GPPEC (Fig. 314 

6). For most sites, OCO-2 SIF captured SOS and EOS matched closely with EC-based 315 

estimations, with the onset of spring and autumn within 10 days. However, the OCO-2 316 

inferred growing seasons were generally shorter than that inferred by GPPEC. At in some 317 

cases, the seasonal cycles fitted by the double-logistic curve fitting methods were not 318 

consistent exactly with that of GPPEC (see US-WCr). 319 

 320 

Figure 6. The original measurements, fitted seasonal cycles, and start/end of growing seasons 321 

derived from OCO-2 SIF and EC measurements. 322 

4. Discussions 323 

4.1 Uncertainties and Limitations 324 

In this study, we focused on 15 EC sites in mid-to-high latitude forests in Europe and 325 

North America to examine the seasonal trajectories of satellite-derived VIs, LAI and SIF, as 326 

well as their relationships with EC-based estimations of canopy photosynthesis. An additional 327 
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objective is to explore the capacities of five remote sensing based measurements to track the 328 

key seasonal metrics in photosynthesis. The uncertainties and limitations of the results are 329 

mainly attributed to the following two aspects. 330 

Firstly, the imperfect matches of spatial or temporal representativeness of satellite 331 

observations and EC estimations may affect the results. We acknowledge the inherent 332 

difficulties when comparing the relatively small spatial scales of tower-based estimations 333 

with those of the coarse resolutions of GOME-2 SIF. Although we selected sites with 334 

relatively homogenous forests, our assumption that the flux sites can represent the 335 

biophysical environment and vegetation of the whole girds may hinder the outcome and 336 

reliability of our work (Zhang et al., 2016a). Consequently, we used the modelling GPP that 337 

matched the spatial scales of the GOME-2 SIF data as references and explored the emerging 338 

OCO-2 SIF at significant improved spatial resolutions that are similar to EC-based 339 

estimations (Verma et al., 2017). While the improved spatial representativeness of OCO-2 340 

measurements, the sparse spatial resampling strategies and masks of cloudy measurements 341 

lead to limited observations for most sites, which makes it hard to apply them for retrieving 342 

seasonal patterns. In this study, we proposed a 2-year (or 3-year) merges of remotely sensed 343 

fluorescence from OCO-2 and to analyse the shifts of seasonal photosynthesis patterns based 344 

on them. Similar assumptions that the seasonal cycles of a site at different years can be seen 345 

alike when comparing cross-site were made in Joiner et al. (2014). Since we exploited a 346 

two-year merged SIF sets to extract the underlying seasonal cycles and compared it against 347 

EC-based estimations of one year, it might lead to a slight discrepancy of seasonalities. 348 

Secondly, optical remote sensing in high latitudes is relatively humped. Influences of high 349 

sun-zenith angles, atmospheric effects, snow cover and repeated observations in the visible 350 

bands are obvious and the observations are often complicated by persistent cloud cover. 351 

Hence we used the MODIS nadir BRDF adjusted reflectance products in this study because it 352 

provides the estimations that are normalized to nadir, cloud-free, and atmospherically 353 

corrected. 354 

4.2 SIF-GPP relationships 355 

Despite the potentials of SIF to estimate GPP at various spatial and temporal scales, the 356 
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models that can be used for estimating GPP with SIF can be complex and ecosystem-specific 357 

(Damm et al., 2015). The relationships between SIF and GPP may contain the information of 358 

canopy structure as well as the physiological processes (Badgley et al., 2017). Several studies 359 

proposed that the use of a nonlinear model may be more appropriate in some cases (Damm et 360 

al., 2010). Zhang et al. (2016a) found that SIF tends to be non-linearly related to GPP at 361 

instantaneous time scale, however, their relationships tend to linearize on daily to seasonal 362 

scales. In this study, we found that, even on the biweekly scale, the use of a hyperbolic model 363 

still outperformed the linear model when illustrating the SIF-GPP relationships. The 364 

nonlinear relationships between SIF and GPP were assumed as LUE may be non-linearly 365 

responded to APAR. 366 

On seasonal scales, we compared the patterns in averaged GPPEC, SIF and APAR of 15 367 

sites (Fig.7) and found close matches between SIF and GPPEC. The distinct trajectories 368 

between APAR and SIF yet existed. While SIF was a direct response to absorbed radiation, 369 

the fact that SIF and APAR had distinct seasonal cycles may suggest that SIF of mid-to-high 370 

latitude forests was not only driven by APAR but may also be affected by other factors (e.g., 371 

light use efficiency). Similar results were found in Walther et al. (2016). Since we used 372 

estimated daily SIF against the MODIS based estimations that are usually observed at 373 

instantaneous scale, it is accepted that this protocol may affect the results, although VIs of a 374 

canopy show less significant variations within a day (Zhang et al., 2018). The models that we 375 

used to estimate APAR may also impact the results. Relatively, EVI proxied APAR 376 

(EVI×PAR) showed a seasonal pattern more consistent with SIF and GPPEC. This is the 377 

reason for us to apply EVI proxied APAR as another estimation of APAR in this study 378 

(Turner et al., 2003; Xiao et al., 2004b). Those results are in line with previous results that 379 

found EVI being a better proxy of the fraction of chlorophyll absorbed PAR (Liu et al., 2017; 380 

Sims et al., 2008). 381 

Additionally, there appeared saturation effects of GPPupscaled for DBF and MF when 382 

comparing against SIF. It may be attributed to the fact that Fluxcom used MODIS FPAR for 383 

upscaling site-based observations. The performance of MODIS FPAR have been found in 384 

previous studies to be hampered by saturation effects (Yang et al., 2015). To produce 385 

upscaled datasets of GPP and other parameters, the use of SIF or other improved indexes for 386 
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upscaling may further evaluate their performance (Köhler et al., 2017; Tramontana et al., 387 

2016). 388 

 389 

Figure 7. The seasonal cycles of GPPEC, GOME-2 SIF and two estimations of APAR by 390 

averaging the outcomes of all sites 391 
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4.3 Intercomparison of satellite captured seasonal patterns of canopy photosynthesis 392 

In this study, we compared the potentials of five remote sensing based measurements in 393 

predicting seasonal trajectories canopy photosynthesis. Remote sensing based approaches to 394 

determine phenological metrics (e.g., SOS and EOS) can be challenging because different 395 

parameters may respond uniquely to biophysical environments, resulting in different 396 

predictions. We found that, despite the mismatched spatial representativeness of GOME-2 397 

SIF and mismatched observing time of OCO-2 SIF, the seasonal trajectories and phenological 398 

metrics depicted by these emerging SIF measurements matched closely with EC-based 399 

estimations. 400 

Regardless of our efforts in modelling seasonal cycles from two-year merged sets, the 401 

OCO-2 SIF measurements remained limited for most sites. At site-level, the limited numbers 402 

of observations will make it extremely difficult to develop seasonal cycles of all sites because 403 

only very few sites have sufficient times of observations (Lu et al., 2018). This shortage of 404 

data may also be responsible for the relatively shorter growing seasons than that estimated by 405 

GPPEC because the weight-based curving fitting method was hindered from determining the 406 

free parameters. Thus, at large scales, several studies attempted to generate the monthly 407 

means of OCO-2 SIF as the seasonal indicators (Köhler et al., 2017; Luus et al., 2017). The 408 

applications of OCO-2 SIF with relatively fine resolutions yet sparse coverages should be 409 

carefully deliberated. 410 

5. Conclusions and Outlooks 411 

Our results added additional endorsements for the applications of satellite-derived SIF in 412 

phenological studies in forest biomes. In 15 mid-to-high latitude forests in North America 413 

and Europe, the seasonal trajectories of GOME-2 datasets were significantly correlated with  414 

GPPEC with R2 values ranged from 0.53 to 0.74 with the linear model, while that ranged from 415 

0.76 to 0.86 with the hyperbolic model. At the same time, the start and end of growing 416 

seasons estimated by GOME-2 and OCO-2 SIF matched closely with EC based estimations. 417 

Among MODIS estimations, the SOS captured by NDVI and PI were most reliable 418 

estimations with the R2 over 0.4. No MODIS indexes accurately predicted the EOS with an 419 

overall R2 below 0.3.  420 
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Recently, data from OCO-2 has the great potentials in advancing the estimations of 421 

regional photosynthesis (Sun et al., 2017). However, we found that growing seasons 422 

estimated by OCO-2 SIF were relatively shorter than that of the EC-based estimations (up to 423 

3 to 4 weeks) possibly due to the limited data from OCO-2 SIF for most sites. The limited 424 

observations from OCO-2 may lead its applications to be restrained at a small range of sites. 425 

Meanwhile, Tropospheric Monitoring Instrument (TROPOMI) that just recently launched 426 

on-board Sentinel-5 Precursor in October of 2017 and Fluorescence Explorer (Flex) 427 

scheduled to be launched around 2022 will start to provide global consistent observations 428 

soon. They will provide high-resolution global estimations of SIF (7 km by 7 km for 429 

TROPOMI and 300 m for Flex) that can be used to explore the potential of satellite-derived 430 

SIF in estimating photosynthetic capacity and seasonality (Alemohammad et al., 2016; 431 

Frankenberg et al., 2014; Guanter et al., 2015; Rascher et al., 2008). For Flex, the revisiting 432 

cycles repeat every 27 days, which may lead to a difficulty for retrieving seasonal patterns. 433 

But with the wider swath patterns, it can revisit the mid-to-high latitude regions up to every 434 

four days (Drusch et al., 2016). 435 
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