29 research outputs found

    Improving Machine Reading Comprehension with Multi-Task Learning and Self-Training

    No full text
    Machine Reading Comprehension (MRC) is an AI challenge that requires machines to determine the correct answer to a question based on a given passage, in which extractive MRC requires extracting an answer span to a question from a given passage, such as the task of span extraction. In contrast, non-extractive MRC infers answers from the content of reference passages, including Yes/No question answering to unanswerable questions. Due to the specificity of the two types of MRC tasks, researchers usually work on one type of task separately, but real-life application situations often require models that can handle many different types of tasks in parallel. Therefore, to meet the comprehensive requirements in such application situations, we construct a multi-task fusion training reading comprehension model based on the BERT pre-training model. The model uses the BERT pre-training model to obtain contextual representations, which is then shared by three downstream sub-modules for span extraction, Yes/No question answering, and unanswerable questions, next we fuse the outputs of the three sub-modules into a new span extraction output and use the fused cross-entropy loss function for global training. In the training phase, since our model requires a large amount of labeled training data, which is often expensive to obtain or unavailable in many tasks, we additionally use self-training to generate pseudo-labeled training data to train our model to improve its accuracy and generalization performance. We evaluated the SQuAD2.0 and CAIL2019 datasets. The experiments show that our model can efficiently handle different tasks. We achieved 83.2EM and 86.7F1 scores on the SQuAD2.0 dataset and 73.0EM and 85.3F1 scores on the CAIL2019 dataset

    Improving Machine Reading Comprehension with Multi-Task Learning and Self-Training

    No full text
    Machine Reading Comprehension (MRC) is an AI challenge that requires machines to determine the correct answer to a question based on a given passage, in which extractive MRC requires extracting an answer span to a question from a given passage, such as the task of span extraction. In contrast, non-extractive MRC infers answers from the content of reference passages, including Yes/No question answering to unanswerable questions. Due to the specificity of the two types of MRC tasks, researchers usually work on one type of task separately, but real-life application situations often require models that can handle many different types of tasks in parallel. Therefore, to meet the comprehensive requirements in such application situations, we construct a multi-task fusion training reading comprehension model based on the BERT pre-training model. The model uses the BERT pre-training model to obtain contextual representations, which is then shared by three downstream sub-modules for span extraction, Yes/No question answering, and unanswerable questions, next we fuse the outputs of the three sub-modules into a new span extraction output and use the fused cross-entropy loss function for global training. In the training phase, since our model requires a large amount of labeled training data, which is often expensive to obtain or unavailable in many tasks, we additionally use self-training to generate pseudo-labeled training data to train our model to improve its accuracy and generalization performance. We evaluated the SQuAD2.0 and CAIL2019 datasets. The experiments show that our model can efficiently handle different tasks. We achieved 83.2EM and 86.7F1 scores on the SQuAD2.0 dataset and 73.0EM and 85.3F1 scores on the CAIL2019 dataset

    Swin-HSTPS: Research on Target Detection Algorithms for Multi-Source High-Resolution Remote Sensing Images

    No full text
    Traffic port stations are composed of buildings, infrastructure, and transportation vehicles. The target detection of traffic port stations in high-resolution remote sensing images needs to collect feature information of nearby small targets, comprehensively analyze and classify, and finally complete the traffic port station positioning. At present, deep learning methods based on convolutional neural networks have made great progress in single-target detection of high-resolution remote sensing images. How to show good adaptability to the recognition of multi-target complexes of high-resolution remote sensing images is a difficult point in the current remote sensing field. This paper constructs a novel high-resolution remote sensing image traffic port station detection model (Swin-HSTPS) to achieve high-resolution remote sensing image traffic port station detection (such as airports, ports) and improve the multi-target complex in high-resolution remote sensing images The recognition accuracy of high-resolution remote sensing images solves the problem of high-precision positioning by comprehensive analysis of the feature combination information of multiple small targets in high-resolution remote sensing images. The model combines the characteristics of the MixUp hybrid enhancement algorithm, and enhances the image feature information in the preprocessing stage. The PReLU activation function is added to the forward network of the Swin Transformer model network to construct a ResNet-like residual network and perform convolutional feature maps. Non-linear transformation strengthens the information interaction of each pixel block. This experiment evaluates the superiority of the model training by comparing the two indicators of average precision and average recall in the training phase. At the same time, in the prediction stage, the accuracy of the prediction target is measured by confidence. Experimental results show that the optimal average precision of the Swin-HSTPS reaches 85.3%, which is about 8% higher than the average precision of the Swin Transformer detection model. At the same time, the target prediction accuracy is also higher than the Swin Transformer detection model, which can accurately locate traffic port stations such as airports and ports in high-resolution remote sensing images. This model inherits the advantages of the Swin Transformer detection model, and is superior to mainstream models such as R-CNN and YOLOv5 in terms of the target prediction ability of high-resolution remote sensing image traffic port stations

    Swin-HSTPS: Research on Target Detection Algorithms for Multi-Source High-Resolution Remote Sensing Images

    No full text
    Traffic port stations are composed of buildings, infrastructure, and transportation vehicles. The target detection of traffic port stations in high-resolution remote sensing images needs to collect feature information of nearby small targets, comprehensively analyze and classify, and finally complete the traffic port station positioning. At present, deep learning methods based on convolutional neural networks have made great progress in single-target detection of high-resolution remote sensing images. How to show good adaptability to the recognition of multi-target complexes of high-resolution remote sensing images is a difficult point in the current remote sensing field. This paper constructs a novel high-resolution remote sensing image traffic port station detection model (Swin-HSTPS) to achieve high-resolution remote sensing image traffic port station detection (such as airports, ports) and improve the multi-target complex in high-resolution remote sensing images The recognition accuracy of high-resolution remote sensing images solves the problem of high-precision positioning by comprehensive analysis of the feature combination information of multiple small targets in high-resolution remote sensing images. The model combines the characteristics of the MixUp hybrid enhancement algorithm, and enhances the image feature information in the preprocessing stage. The PReLU activation function is added to the forward network of the Swin Transformer model network to construct a ResNet-like residual network and perform convolutional feature maps. Non-linear transformation strengthens the information interaction of each pixel block. This experiment evaluates the superiority of the model training by comparing the two indicators of average precision and average recall in the training phase. At the same time, in the prediction stage, the accuracy of the prediction target is measured by confidence. Experimental results show that the optimal average precision of the Swin-HSTPS reaches 85.3%, which is about 8% higher than the average precision of the Swin Transformer detection model. At the same time, the target prediction accuracy is also higher than the Swin Transformer detection model, which can accurately locate traffic port stations such as airports and ports in high-resolution remote sensing images. This model inherits the advantages of the Swin Transformer detection model, and is superior to mainstream models such as R-CNN and YOLOv5 in terms of the target prediction ability of high-resolution remote sensing image traffic port stations

    Visual exploratory search of relationship graphs on smartphones.

    Get PDF
    This paper presents a novel framework for Visual Exploratory Search of Relationship Graphs on Smartphones (VESRGS) that is composed of three major components: inference and representation of semantic relationship graphs on the Web via meta-search, visual exploratory search of relationship graphs through both querying and browsing strategies, and human-computer interactions via the multi-touch interface and mobile Internet on smartphones. In comparison with traditional lookup search methodologies, the proposed VESRGS system is characterized with the following perceived advantages. 1) It infers rich semantic relationships between the querying keywords and other related concepts from large-scale meta-search results from Google, Yahoo! and Bing search engines, and represents semantic relationships via graphs; 2) the exploratory search approach empowers users to naturally and effectively explore, adventure and discover knowledge in a rich information world of interlinked relationship graphs in a personalized fashion; 3) it effectively takes the advantages of smartphones' user-friendly interfaces and ubiquitous Internet connection and portability. Our extensive experimental results have demonstrated that the VESRGS framework can significantly improve the users' capability of seeking the most relevant relationship information to their own specific needs. We envision that the VESRGS framework can be a starting point for future exploration of novel, effective search strategies in the mobile Internet era

    Simcryocluster: a semantic similarity clustering method of cryo-EM images by adopting contrastive learning

    No full text
    Abstract Background Cryo-electron microscopy (Cryo-EM) plays an increasingly important role in the determination of the three-dimensional (3D) structure of macromolecules. In order to achieve 3D reconstruction results close to atomic resolution, 2D single-particle image classification is not only conducive to single-particle selection, but also a key step that affects 3D reconstruction. The main task is to cluster and align 2D single-grain images into non-heterogeneous groups to obtain sharper single-grain images by averaging calculations. The main difficulties are that the cryo-EM single-particle image has a low signal-to-noise ratio (SNR), cannot manually label the data, and the projection direction is random and the distribution is unknown. Therefore, in the low SNR scenario, how to obtain the characteristic information of the effective particles, improve the clustering accuracy, and thus improve the reconstruction accuracy, is a key problem in the 2D image analysis of single particles of cryo-EM. Results Aiming at the above problems, we propose a learnable deep clustering method and a fast alignment weighted averaging method based on frequency domain space to effectively improve the class averaging results and improve the reconstruction accuracy. In particular, it is very prominent in the feature extraction and dimensionality reduction module. Compared with the classification method based on Bayesian and great likelihood, a large amount of single particle data is required to estimate the relative angle orientation of macromolecular single particles in the 3D structure, and we propose that the clustering method shows good results. Conclusions SimcryoCluster can use the contrastive learning method to perform well in the unlabeled high-noise cryo-EM single particle image classification task, making it an important tool for cryo-EM protein structure determinatio

    Example of multi-scale GOI graphs.

    No full text
    <p>Example of multi-scale GOI graphs.</p

    Overview of the smartphone interaction design.

    No full text
    <p>Overview of the smartphone interaction design.</p
    corecore