325 research outputs found
Novel Syntheses and Surface Modifications of Electrode Materials for Superior Lithium-Ion Batteries
Rechargeable lithium-ion battery is one of the most promising energy conversion and storage systems that offers high energy and powder densities, long service life and assuring safety. Performance of lithium-ion batteries crucially relies on electrochemical characteristics of electrode materials, i.e., anode and cathode materials. This dissertation work aims at developing novel electrode materials with high capacity, excellent cycling stability and remarkable rate capability for next-generation lithium-ion batteries. The effects of surface modifications for LiMn2O4 cathode materials are studied by depositing ultrathin conformal amphoteric oxides via atomic layer deposition (ALD). In the case of ZnO coating, the thickness of ZnO ALD layers can be finely optimized at atomic scale by varying ALD growth cycles. Six ZnO ALD layers demonstrate to have the optimal thickness (~ 1 nm) for the best electrochemical performance of LiMn2O4 cathodes either at room temperature or elevated temperature. Furthermore, the effects of crystalline ZrO2 ALD coating on improving elevated-temperature performance of either micro-sized or nano-sized LiMn2O4 particles are evaluated. Other work concentrates on boosting electrochemical performance of Li-excess layered transition metal oxides, which are emerging lithium-ion battery cathode materials with very high theoretical capacities but suffering from drastic initial capacity loss and poor rate capability. To solve these issues, one strategy involves preparing hierarchical functional surface modifications on Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles, which consist of nano-sized LiCoO2 shell and sub-nano-sized ZrO2 ALD coating. The other route is to completely convert Li-excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 to a Li4Mn5O12-type spinel product via ex-situ ion-exchanges and a post-annealing process. The enhanced electrochemical performance of Li-excess layered cathode materials is achieved from the synergetic effects of ALD oxide coating and core-shell structure, ex-situ layered-to-spinel phase transformation, and nanoarchitecture with high surface area. In addition to cathode materials, multi-shell spherical Mn0.54Ni0.13Co0.13(CO3)0.8 carbonate anode material is synthesized by a hydrothermal approach, which is combined with its lithiated yolk-shell-structured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode for a full battery cell exhibiting excellent electrochemical performance
Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549
<p>Abstract</p> <p>Background</p> <p>Klotho, as a new anti-aging gene, can shed into circulation and act as a multi-functional humoral factor that influences multiple biological processes. Recently, published studies suggest that klotho can also serve as a potential tumor suppressor. The aim of this study is to investigate the effects and possible mechanisms of action of klotho in human lung cancer cell line A549.</p> <p>Methods</p> <p>In this study, plasmids encoding klotho or klotho specific shRNAs were constructed to overexpress or knockdown klotho in vitro. A549 cells were respectively treated with pCMV6-MYC-KL or klotho specific shRNAs. The MTT assay was used to evaluate the cytotoxic effects of klotho and flow cytometry was utilized to observe and detect the apoptosis of A549 cells induced by klotho. The activation of IGF-1/insulin signal pathways in A549 cells treated by pCMV6-MYC-KL or shRNAs were evaluated by western blotting. The expression levels of bcl-2 and bax transcripts were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR).</p> <p>Results</p> <p>Overexpression of klotho reduced the proliferation of lung cancer A549 cells, whereas klotho silencing in A549 cells enhanced proliferation. Klotho did not show any effects on HEK-293 cells. Klotho overexpression in A549 cells was associated with reduced IGF-1/insulin-induced phosphorylation of IGF-1R (IGF-1 receptor)/IR (insulin receptor) (<it>P </it>< 0.01). Overexpression of klotho can promote the apoptosis of A549 cells (<it>P </it>< 0.01). Overexpression of klotho, a bcl family gene bax, was found up-regulated and bcl-2, an anti-apoptosis gene, was found down-regulated (<it>P </it>< 0.01). In contrast, bax and bcl-2 were found down-regulated (<it>P </it>< 0.05) and up-regulated (<it>P </it>< 0.01), respectively when silencing klotho using shRNAs.</p> <p>Conclusions</p> <p>Klotho can inhibit proliferation and increase apoptosis of A549 cells, this may be partly due to the inhibition of IGF-1/insulin pathways and involving regulating the expression of the apoptosis-related genes bax/bcl-2. Thus, klotho can serve as a potential tumor suppressor in A549 cells.</p
IGF-I and IGFBP-3 and the risk of lung cancer: A meta-analysis based on nested case-control studies
<p>Abstract</p> <p>Background</p> <p>Lung cancer is the leading cause of death from cancer worldwide. Conventional studies mainly think that insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3) may promote and inhibit tumor growth, respectively. However, there are many different results about their function in some recent epidemiological studies. To evaluate the relationship between circulating serum levels of IGF-I, IGFBP-3 and lung cancer, a systematic review and meta-analysis of the published data was performed.</p> <p>Methods</p> <p>Literatures searched on PubMed and Embase databases were enrolled in the Meta-analysis. The Meta-analysis of all eligible studies was applied with Stata 10.0 software, and the pooled odds ratio(OR) and weighted mean difference (WMD) value were obtained. The Q test, Egger's test and Begg's funnel plot were used to evaluate the heterogeneity and publication bias between the studies.</p> <p>Results</p> <p>There are no statistically significant heterogeneity and publication bias between the studies. For IGF- I, the pooled OR and WMD were 0.87(95%CI: 0.60~1.13,) and -3.04(95%CI: -7.10~1.02, P = 0.14), respectively. For IGFBP-3, the pooled OR and WMD were 0.68(95%CI: 0.48~0.88,) and -112.28(95%CI: -165.88~-58.68, P < 0.0001), respectively.</p> <p>Conclusion</p> <p>The association between circulating IGF- I levels and the risk of lung cancer were not statistically significant; IGFBP-3, acts as a tumor suppressor and has a inverse correlation with the risk of lung cancer.</p
Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression
Streptococcus suis (S. suis) is a crucial zoonotic pathogen which causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections which are harder to treat. Sub-minimal inhibitory concentration (sub-MIC) of tylosin can inhibit biofilm formation in bacteria. By using iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment or no treatement. The result showed that 96 proteins expression were changed with 77 up-regulated and 19 down-regulated proteins. Several metabolism proteins (such as phosphoglycerate kinase), as well as cell surface proteins (such as ABC transporter proteins), were found to be involved in biofilm formation. Overall, our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth by sub-MIC tylosin treated. Thus, our data analyzed rough regulation of biofilm formation that lay the foundation for the future research of mechanism and targets
A Label-Free Quantitative Proteomic Analysis of Mouse Neutrophil Extracellular Trap Formation Induced by Streptococcus suis or Phorbol Myristate Acetate (PMA)
Streptococcus suis (S. suis) ranks among the five most important porcine pathogens worldwide and occasionally threatens human health, particularly in people who come into close contact with pigs or pork products. An S. suis infection induces the formation of neutrophil extracellular traps (NETs) in vitro and in vivo, and the NET structure plays an essential role in S. suis clearance. However, the signaling pathway by which S. suis induces NET formation remains to be elucidated. In the present study, we used a label-free quantitative proteomic analysis of mouse NET formation induced by S. suis or phorbol myristate acetate (PMA), a robust NET inducer. Greater than 50% of the differentially expressed proteins in neutrophils infected by S. suis showed similar changes as observed following PMA stimulation, and PKC, NADPH oxidase, and MPO were required for NET formation induced by both stimuli. Because PMA induced robust NET formation while S. suis (MOI = 2) induced only weak NET formation, the association between the inducer and NET formation was worth considering. Interestingly, proteins involved in peptidase activity showed significant differential changes in response to each inducer. Of these peptidases, MMP-8 expression was obviously decreased in response to PMA, but it was not significantly changed in response to S. suis. A subsequent study further confirmed that MMP-8 activity was inversely correlated with NET formation induced by both stimuli. Therefore, the present study provides potentially important information about the manner by which neutrophils responded to the inducers to form NETs
Graph Convolutional Network with Connectivity Uncertainty for EEG-based Emotion Recognition
Automatic emotion recognition based on multichannel Electroencephalography
(EEG) holds great potential in advancing human-computer interaction. However,
several significant challenges persist in existing research on algorithmic
emotion recognition. These challenges include the need for a robust model to
effectively learn discriminative node attributes over long paths, the
exploration of ambiguous topological information in EEG channels and effective
frequency bands, and the mapping between intrinsic data qualities and provided
labels. To address these challenges, this study introduces the
distribution-based uncertainty method to represent spatial dependencies and
temporal-spectral relativeness in EEG signals based on Graph Convolutional
Network (GCN) architecture that adaptively assigns weights to functional
aggregate node features, enabling effective long-path capturing while
mitigating over-smoothing phenomena. Moreover, the graph mixup technique is
employed to enhance latent connected edges and mitigate noisy label issues.
Furthermore, we integrate the uncertainty learning method with deep GCN weights
in a one-way learning fashion, termed Connectivity Uncertainty GCN (CU-GCN). We
evaluate our approach on two widely used datasets, namely SEED and SEEDIV, for
emotion recognition tasks. The experimental results demonstrate the superiority
of our methodology over previous methods, yielding positive and significant
improvements. Ablation studies confirm the substantial contributions of each
component to the overall performance.Comment: 10 page
Significance of PTEN Mutation in Cellular Process, Prognosis, and Drug Selection in Clear Cell Renal Cell Carcinoma
It is well established that the PTEN (Phosphatase and Tensin Homolog) mutant is a frequently mutated gene found in clear cell renal cell carcinoma (ccRCC), making it a potential biomarker for individualized treatment opinions. Here, in the present study, we designed a method to evaluate the significance of the PTEN mutation in the prognosis and drug selection of ccRCC, determine the potential changing pathways and genes associated with the mechanisms. The most recent TCGA data shows that the PTEN mutation is found in 5% of ccRCC patients. In total, 2,569 genes were identified as DEGs. GO and KEGG analysis suggested that DEGs were significantly enriched in categories associated with cell division and multiple metabolic progressions. The top 10 genes, ranked by degree, were identified as hub genes from the protein–protein interaction network (PPI). What is more, patients with the PTEN mutation were associated with a worsened prognosis of ccRCC. Data from the GDSC database indicated that the selective AKT inhibitor, GSK690693, is a selective inhibitor for ccRCC with the PTEN mutation. Our findings have indicated that multiple genes and pathways may play a crucial role in PTEN mutation ccRCC, offering candidate targets and strategies for PTEN mutation ccRCC individualized treatment
Catalytic oxidation of polymer used in oilfield by supported Co(II) complex within a high pH range
In this study, a clean oxidation process for the treatment of wastewater containing hydroxypropyl guar gum (HPGG) and other polymers under a high pH range was designed. For that, 5-sulfosalicylic acid (L)-Co(II) complex supported on bentonite (B) (B@Co(II)L) was prepared for treatment of wastewater by hydrogen peroxide (). The morphology and pore structure of B@Co(II)L was first characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier infrared spectrometer (FT-IR), and adsorption–desorption isotherms, after which the catalytic performance was investigated for the treatment of polymer wastewater. Results show that B@Co(II)L performed high catalytic performance in a wide range of 7.0 to 13.0. The viscosity of the HPGG can be decreased effectively from 22 to 2.5 mm/s under the optimal conditions of 45 °C, pH 10.0, 10% (mass ratio to HPGG), and 10% B@Co(II)L (mass ratio to ), and the removal rate for chemical oxygen demand (COD) of HPGG, CMC, and PAM reached to 95.9%, 94.8%, and 93.7%, respectively, within 240 min. Most of all, by applying the catalyst in the oilfield, it was found that the catalyst has high performance and the removal rate for COD of oilfield wastewater, fracturing fluids, and drilling fluid can be achieved by 92.1%, 94.2%, and 90.7%, respectively
- …