86 research outputs found

    Foxp3 inhibits HDAC1 activity to modulate gene expression in human T cells

    Get PDF
    We have previously reported that HIV-1 preferentially infects Foxp3+ Treg cells in vitro and in vivo, and Foxp3 enhances the HIV-1 LTR expression through epigenetic mechanisms in T cells. We report here that histone deacetylase inhibitor (HDACi) failed to further enhance HIV gene expression in FoxP3+ T cells. We discovered that Foxp3 inhibited cellular HDAC activity in T cells, and mutations in the forkhead domain that ablate Foxp3 function also abolished its ability to inhibit HDAC. When co-expressed, Foxp3 specifically inhibited the deacetylase activity of HDAC1. We further showed that Foxp3 was associated with HDAC1, and mutations in the forkhead domain that ablate Foxp3 function in Treg cells also inhibited Foxp3 association with and inhibition of HDAC1. Finally, Foxp3 failed to enhance HIV-1 gene expression in human T cells expressing HDAC1-specific shRNA. We conclude that Foxp3 modulates gene expression in human T cells at least partly by inhibiting HDAC1 activity

    Foxp3 inhibits HDAC1 activity to modulate gene expression in human T cells

    Get PDF
    We have previously reported that HIV-1 preferentially infects Foxp3+ Treg cells in vitro and in vivo, and Foxp3 enhances the HIV-1 LTR expression through epigenetic mechanisms in T cells. We report here that histone deacetylase inhibitor (HDACi) failed to further enhance HIV gene expression in FoxP3+ T cells. We discovered that Foxp3 inhibited cellular HDAC activity in T cells, and mutations in the forkhead domain that ablate Foxp3 function also abolished its ability to inhibit HDAC. When co-expressed, Foxp3 specifically inhibited the deacetylase activity of HDAC1. We further showed that Foxp3 was associated with HDAC1, and mutations in the forkhead domain that ablate Foxp3 function in Treg cells also inhibited Foxp3 association with and inhibition of HDAC1. Finally, Foxp3 failed to enhance HIV-1 gene expression in human T cells expressing HDAC1-specific shRNA. We conclude that Foxp3 modulates gene expression in human T cells at least partly by inhibiting HDAC1 activity

    Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells (MSCs)-based regenerative therapy is currently regarded as an alternative approach to salvage the acute myocardial infarcted hearts. However, the efficiency of MSCs transplantation is limited by lower survival rate of engrafted MSCs. In previous study, we found that 1.0 μg/ml Lipopolysaccharide (LPS) could protect MSCs against apoptosis induced by oxidative stress and meanwhile enhance the proliferation of MSCs. Therefore, in the present study, we firstly preconditioned MSCs with 1.0 μg/ml LPS, then transplanted MSCs into ischemic myocardium, and observed the survival and cardiac protective capacity of MSCs in a rat model of acute myocardial infarction. Furthermore, we tried to explore the underlying mechanisms and the role of Toll-like receptor-4 (TLR4) in the signal pathway of LPS-induced cardiac protection.</p> <p>Methods and results</p> <p>Acute myocardial infarction model was developed by left anterior descending coronary artery ligation. 60 rats were divided into 4 groups randomly and given an intramyocardial injection of one of the following treatments: 30 μl PBS (control group), 3 × 10<sup>6 </sup>wild MSCs/30 μl (wMSCs group), 3 × 10<sup>6 </sup>LPS-preconditioned wild MSCs/30 μl (LPS-wMSCs group), or 3 × 10<sup>6 </sup>LPS-preconditioned TLR4 gene deleted MSCs/30 μl (LPS-tMSCs group). After 3 weeks, LPS-preconditioned wild MSCs transplantation ameliorated cardiac function and reduced fibrosis of infarcted myocardium. Vascular density was markedly increased in LPS-wMSCs group compared with other three groups. Survival rate of engrafted MSCs was elevated and apoptosis of myocardium was reduced in infarcted heart. Expression of vascular endothelial growth factor (VEGF) and phospho-Akt was increased in the infarcted myocardium after transplantation of LPS-preconditioned MSCs.</p> <p>Conclusion</p> <p>LPS preconditioning enhanced survival of engrafted MSCs, stimulated expression of VEGF and activated PI3K/Akt pathway. LPS preconditioning before MSCs transplantation resulted in superior therapeutic neovascularization and recovery of cardiac function. LPS preconditioning provided a novel strategy in maximizing biologic and functional properties of MSCs.</p

    Activation of Nrf2 signaling: A key molecular mechanism of protection against cardiovascular diseases by natural products

    Get PDF
    Cardiovascular diseases (CVD) are a group of cardiac and vascular disorders including myocardial ischemia, congenital heart disease, heart failure, hypertension, atherosclerosis, peripheral artery disease, rheumatic heart disease, and cardiomyopathies. Despite considerable progress in prophylaxis and treatment options, CVDs remain a leading cause of morbidity and mortality and impose an extremely high socioeconomic burden. Oxidative stress (OS) caused by disequilibrium in the generation of reactive oxygen species plays a crucial role in the pathophysiology of CVDs. Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor of endogenous antioxidant defense systems against OS, is considered an ideal therapeutic target for management of CVDs. Increasingly, natural products have emerged as a potential source of Nrf2 activators with cardioprotective properties and may therefore provide a novel therapeutic tool for CVD. Here, we present an updated comprehensive summary of naturally occurring products with cardioprotective properties that exert their effects by suppression of OS through activation of Nrf2 signaling, with the aim of providing useful insights for the development of therapeutic strategies exploiting natural products

    Icariside II, a Phosphodiesterase-5 Inhibitor, Attenuates Beta-Amyloid-Induced Cognitive Deficits via BDNF/TrkB/CREB Signaling

    Get PDF
    Background/Aims: Icariside II (ICS II) is an active component from Epimedium brevicornum, a Chinese medicine extensively used in China. Our previous study has proved that ICS II protects against learning and memory impairments and neuronal apoptosis in the hippocampus induced by beta-amyloid25-35 (Aβ25-35) in rats. However, its in-depth underlying mechanisms remain still unclear. Hence this study was designed to explore the potential underlying mechanisms of ICS II by experiments with an in vivo model of Aβ25-35-induced cognitive deficits in rats combined with a neuronal-like PC12 cells injury in vitro model. Methods: The cognitive deficits was measured using Morris water maze test, and apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial ROS levels were detected by TUNEL, DCFH-DA and Mito-SOX staining, respectively. Expression of Bcl-2, Bax, brain derived neurotrophic factor (BDNF), tyrosine receptor kinase B (TrkB), and cAMP response element binding (p-CREB) and active-Caspase 3 levels were evaluated by Western blot. Results: It was found that ICS II, a phosphodiesterase-5 inhibitor, significantly attenuated cognitive deficits caused by Aβ25-35 injection in rats, and ICS II not only significantly enhanced the expression of BDNF and TrkB, but also activated CREB. Furthermore, ICS II also significantly abrogated Aβ25-35-induced PC12 cell injury, and inhibited Aβ25-35-induced intracellular reactive oxygen species (ROS) overproduction, as well as mitochondrial ROS levels. In addition, ICS II up-regulated the expressions of BDNF and TrkB consistent with the findings in vivo. ANA-12, a TrkB inhibitor, blocked the neuroprotective effect of ICS II on Aβ25-35-induced neuronal injury. Conclusion: ICS II mitigates Aβ25-35-induced cognitive deficits and neuronal cell injury by upregulating the BDNF/TrkB/CREB signaling, suggesting that ICS II can be used as a potential therapeutic agent for dementia, such as Alzheimer’s disease

    Icariside II Ameliorates Cognitive Impairments Induced by Chronic Cerebral Hypoperfusion by Inhibiting the Amyloidogenic Pathway: Involvement of BDNF/TrkB/CREB Signaling and Up-Regulation of PPARα and PPARγ in Rats

    Get PDF
    Chronic cerebral hypoperfusion (CCH) is regarded as a high-risk factor for cognitive decline of vascular dementia (VD) as it is conducive to induce beta-amyloid (Aβ) aggregation. Icariside II (ICS II), a plant-derived flavonoid compound, has showed neuroprotective effect on animal models of Alzheimer’s disease (AD) by decreasing Aβ levels. Here, we assessed the effect of ICS II on CCH-induced cognitive deficits and Aβ levels in rats, and the possible underlying mechanisms were also explored. It was disclosed that CCH induced by bilateral common carotid artery occlusion (BCCAO) caused cognitive deficits, neuronal injury and increase of Aβ1-40 and Aβ1-42 levels in the rat hippocampus, while oral administration of ICS II for 28 days abolished the above deficits in the hippocampus of BCCAO rats. Meanwhile, ICS II significantly decreased the expression of beta-amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1), as well as increased the expression of a disintegrin and metalloproteinase domain 10 (ADAM10) and insulin-degrading enzyme (IDE). ICS II also activated peroxisome proliferator-activated receptor (PPAR)α and PPARγ, enhanced the expression of brain-derived neurotrophic factor (BDNF), tyrosine receptor kinase B (TrkB), levels of Akt and cAMP response element binding protein (CREB) phosphorylation. Together, these findings suggested that ICS II attenuates CCH-induced cognitive deficits by inhibiting the amyloidogenic pathway via involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARα and PPARγ in rats

    HIV-1 Infection Induces Interleukin-1β Production via TLR8 Protein-dependent and NLRP3 Inflammasome Mechanisms in Human Monocytes

    Get PDF
    The induction of inflammatory cytokines such as IL-1β is associated with the progression of human immunodeficiency virus, type 1 (HIV-1) disease or AIDS. Unlike most inflammatory cytokines that are regulated by NF-κB at the transcriptional level, production of mature IL-1β also depends on inflammasome activation. The mechanism by which HIV-1 induces pro-IL-1β expression and activates inflammasomes to cleave pro-IL-1β into its bioactive form is not clearly defined. We report here that HIV-1 infection in human monocytes efficiently induced IL-1β expression and inflammasome activation. Toll-like receptor 8 (TLR8) was required for inducing pro-IL-1β expression, whereas the NLRP3 inflammasome was required for IL-1β maturation and release. Furthermore, the lysosomal protease cathepsin B and HIV-1 induced production of reactive oxygen species were critical for HIV-induced inflammasome activation and IL-1β production. HIV-1 entry, reverse transcription, and integration were all required for both pro-IL-1β expression and inflammasome activation. Finally, we show that HIV-1-derived RNA was sufficient to induce both pro-IL-1β expression and inflammasome activation. We conclude that HIV-1 infection induced the expression of pro-IL-1β via TLR8-mediated mechanisms and activated caspase-1 through the NLRP3 inflammasome to cleave pro-IL-1β into bioactive IL-1β. These findings help to elucidate mechanisms of HIV-1 disease progression and identify novel targets for treating HIV-1 induced inflammation and immune activation

    Vibrational relaxation dynamics in layered perovskite quantum wells

    Full text link
    Organic-inorganic layered perovskites are two-dimensional quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers. The combination of their dielectric confinement and ionic sublattice results in excitonic excitations with substantial binding energies that are strongly coupled to the surrounding soft, polar lattice. However, the ligand environment in layered perovskites can significantly alter their optical properties due to the complex dynamic disorder of soft perovskite lattice. Here, we observe the dynamic disorder through phonon dephasing lifetimes initiated by ultrafast photoexcitation employing high-resolution resonant impulsive stimulated Raman spectroscopy of a variety of ligand substitutions. We demonstrate that vibrational relaxation in layered perovskite formed from flexible alkyl-amines as organic barriers is fast and relatively independent of the lattice temperature. Relaxation in aromatic amine based layered perovskite is slower, though still fast relative to pure inorganic lead bromide lattices, with a rate that is temperature dependent. Using molecular dynamics simulations, we explain the fast rates of relaxation by quantifying the large anharmonic coupling of the optical modes with the ligand layers and rationalize the temperature independence due to their amorphous packing. This work provides a molecular and time-domain depiction of the relaxation of nascent optical excitations and opens opportunities to understand how they couple to the complex layered perovskite lattice, elucidating design principles for optoelectronic devices.Comment: 7 pages, 4 figures, S

    A Recalibrated Molecular Clock and Independent Origins for the Cholera Pandemic Clones

    Get PDF
    Cholera, caused by Vibrio cholerae, erupted globally from South Asia in 7 pandemics, but there were also local outbreaks between the 6th (1899–1923) and 7th (1961–present) pandemics. All the above are serotype O1, whereas environmental or invertebrate isolates are antigenically diverse. The pre 7th pandemic isolates mentioned above, and other minor pathogenic clones, are related to the 7th pandemic clone, while the 6th pandemic clone is in the same lineage but more distantly related, and non-pathogenic isolates show no clonal structure. To understand the origins and relationships of the pandemic clones, we sequenced the genomes of a 1937 prepandemic strain and a 6th pandemic isolate, and compared them with the published 7th pandemic genome. We distinguished mutational and recombinational events, and allocated these and other events, to specific branches in the evolutionary tree. There were more mutational than recombinational events, but more genes, and 44 times more base pairs, changed by recombination. We used the mutational single-nucleotide polymorphisms and known isolation dates of the prepandemic and 7th pandemic isolates to estimate the mutation rate, and found it to be 100 fold higher than usually assumed. We then used this to estimate the divergence date of the 6th and 7th pandemic clones to be about 1880. While there is a large margin of error, this is far more realistic than the 10,000–50,000 years ago estimated using the usual assumptions. We conclude that the 2 pandemic clones gained pandemic potential independently, and overall there were 29 insertions or deletions of one or more genes. There were also substantial changes in the major integron, attributed to gain of individual cassettes including copying from within, or loss of blocks of cassettes. The approaches used open up new avenues for analysing the origin and history of other important pathogens
    • …
    corecore