4 research outputs found

    The role of molecular chaperonins in warm ischemia and reperfusion injury in the steatotic liver: A proteomic study

    Get PDF
    BACKGROUND: The molecular basis of the increased susceptibility of steatotic livers to warm ischemia/reperfusion (I/R) injury during transplantation remains undefined. Animal model for warm I/R injury was induced in obese Zucker rats. Lean Zucker rats provided controls. Two dimensional differential gel electrophoresis was performed with liver protein extracts. Protein features with significant abundance ratios (p < 0.01) between the two cohorts were selected and analyzed with HPLC/MS. Proteins were identified by Uniprot database. Interactive protein networks were generated using Ingenuity Pathway Analysis and GRANITE software. RESULTS: The relative abundance of 105 proteins was observed in warm I/R injury. Functional grouping revealed four categories of importance: molecular chaperones/endoplasmic reticulum (ER) stress, oxidative stress, metabolism, and cell structure. Hypoxia up-regulated 1, calcium binding protein 1, calreticulin, heat shock protein (HSP) 60, HSP-90, and protein disulfide isomerase 3 were chaperonins significantly (p < 0.01) down-regulated and only one chaperonin, HSP-1was significantly upregulated in steatotic liver following I/R. CONCLUSION: Down-regulation of the chaperones identified in this analysis may contribute to the increased ER stress and, consequently, apoptosis and necrosis. This study provides an initial platform for future investigation of the role of chaperones and therapeutic targets for increasing the viability of steatotic liver allografts

    Antithrombin Perfluorocarbon Nanoparticles Improve Renal Allograft Function in a Murine Deceased Criteria Donor Model

    Get PDF
    Background. Over 100 000 patients await renal transplantation and 4000 die per year. Compounding this mismatch between supply and demand is delayed graft function which contributes to short-term and long-term graft failures. Previously, we reported that thrombin-targeted perfluorocarbon nanoparticles (PFC-NP) protect kidneys from ischemic renal injury after transient arterial occlusion. Here we hypothesize that perfusion of renal allografts with PFC-NP similarly can protect graft function after an ischemic interval. Methods. After 60 minutes of warm ischemia, male Lewis rats underwent left renal explantation followed by renal perfusion with 5 mL of standard perfusate alone (N = 3) or with 0.3 mL of untargeted PFC-NP (N = 5) or 0.3 mL thrombin-targeted of PFC NP functionalized with phenylalanine-proline-arginine-chloromethylketone (PPACK) (PFC-PPACK), an irreversible thrombin inhibitor (N = 5). Kidneys underwent 6 hours of cold storage, followed by transplantation into recipients and native nephrectomy. Animals were euthanized at 24 hours for tissue collection or at 48 hours for blood and renal tissue collection. A survival experiment was performed using the same protocol with saline control (N = 3), PFC-NP (N = 3) or PFC-PPACK (N = 6). Results. Serum creatinine was improved for the PFC-PPACK groups as compared with control groups (P < 0.04). Kaplan-Meier survival curves also indicated increased longevity (P < 0.05). Blinded histologic scoring revealed markedly attenuated renal damage in the PFC-PPACK group compared to untreated animals (2.75 ± 1.60 versus 0.83 ± 3.89; P = 0.0001) and greater preservation of renal vasculature. Conclusions. These results validate an NP-based approach to improve renal graft function as antithrombin NPs improved allograft function, decreased renal damage, protected vasculature, and improved longevity
    corecore