267 research outputs found
Macrophage depletion disrupts immune balance and energy homeostasis.
Increased macrophage infiltration in tissues including white adipose tissue and skeletal muscle has been recognized as a pro-inflammatory factor that impairs insulin sensitivity in obesity. However, the relationship between tissue macrophages and energy metabolism under non-obese physiological conditions is not clear. To study a homeostatic role of macrophages in energy homeostasis, we depleted tissue macrophages in adult mice through conditional expression of diphtheria toxin (DT) receptor and DT-induced apoptosis. Macrophage depletion robustly reduced body fat mass due to reduced energy intake. These phenotypes were reversed after macrophage recovery. As a potential mechanism, severe hypothalamic and systemic inflammation was induced by neutrophil (NE) infiltration in the absence of macrophages. In addition, macrophage depletion dramatically increased circulating granulocyte colony-stimulating factor (G-CSF) which is indispensable for NE production and tissue infiltration. Our in vitro study further revealed that macrophages directly suppress G-CSF gene expression. Therefore, our study indicates that macrophages may play a critical role in integrating immune balance and energy homeostasis under physiological conditions
Giα proteins exhibit functional differences in the activation of ERK1/2, Akt and mTORC1 by growth factors in normal and breast cancer cells
Background In a classic model, Giα proteins including Gi1α, Gi2α and Gi3α are important for transducing signals from Giα protein-coupled receptors (GiαPCRs) to their downstream cascades in response to hormones and neurotransmitters. Our previous study has suggested that Gi1α, Gi2α and Gi3α are also important for the activation of the PI3K/Akt/mTORC1 pathway by epidermal growth factor (EGF) and its family members. However, a genetic role of these Giα proteins in the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) by EGF is largely unknown. Further, it is not clear whether these Giα proteins are also engaged in the activation of both the Akt/mTORC1 and ERK1/2 pathways by other growth factor family members. Additionally, a role of these Giα proteins in breast cancer remains to be elucidated. Results We found that Gi1/3 deficient MEFs with the low expression level of Gi2α showed defective ERK1/2 activation by EGFs, IGF-1 and insulin, and Akt and mTORC1 activation by EGFs and FGFs. Gi1/2/3 knockdown breast cancer cells exhibited a similar defect in the activations and a defect in in vitro growth and invasion. The Giα proteins associated with RTKs, Gab1, FRS2 and Shp2 in breast cancer cells and their ablation impaired Gab1’s interactions with Shp2 in response to EGF and IGF-1, or with FRS2 and Grb2 in response to bFGF. Conclusions Giα proteins differentially regulate the activation of Akt, mTORC1 and ERK1/2 by different families of growth factors. Giα proteins are important for breast cancer cell growth and invasion.Fil: Wang, Zhanwei. University of Hawaii Cancer Center. Honolulu; Estados UnidosFil: Dela Cruz, Rica. University of Hawaii Cancer Center. Honolulu; Estados UnidosFil: Ji, Fang. Shanghai Jiao Tong University . Sahnghai; ChinaFil: Guo, Sheng. University of Hawaii Cancer Center. Honolulu; Estados Unidos. Shanghai Jiaotong University. Shangha; Estados UnidosFil: Zhang, Jianhua. Shanghai Jiaotong University. Shangha; Estados Unidos. University of Hawaii Cancer Center. Honolulu; Estados UnidosFil: Wang, Ying. David Geffen School of Medicine at UCLA. Los Angeles; Estados UnidosFil: Feng, Gen-Sheng. University of California at San Diego; Estados UnidosFil: Birnbaumer, Lutz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. National Institutes of Health; Estados UnidosFil: Jiang, Meisheng. David Geffen School of Medicine at UCLA. Los Angeles; Estados UnidosFil: Chu, Wen Ming. University of Hawaii Cancer Center. Honolulu; Estados Unido
Target Contour Recovering for Tracking People in Complex Environments
Recovering people contours from partial occlusion is a challenging problem in a visual tracking system. Partial occlusions would bring about unreasonable contour changes of the target object. In this paper, a novel method is presented to detect partial occlusion on people contours and recover occluded portions. Unlike other occlusion detection methods, the proposed method is only based on contours, which makes itself more flexible to be extended for further applications. Experiments with synthetic images demonstrate the accuracy of the method for detecting partial occlusions, and experiments on real-world video sequence are also carried out to prove that the method is also good enough to be used to recover target contours
High-fat feeding reprograms maternal energy metabolism and induces long-term postpartum obesity in mice.
BackgroundExcessive gestational weight gain (EGWG) closely associates with postpartum obesity. However, the causal role of EGWG in postpartum obesity has not been experimentally verified. The objective of this study was to determine whether and how EGWG causes long-term postpartum obesity.MethodsC57BL/6 mice were fed with high-fat diet during gestation (HFFDG) or control chow, then their body composition and energy metabolism were monitored after delivery.ResultsWe found that HFFDG significantly increased gestational weight gain. After delivery, adiposity of HFFDG-treated mice (Preg-HF) quickly recovered to the levels of controls. However, 3 months after parturition, Preg-HF mice started to gain significantly more body fat even with regular chow. The increase of body fat of Preg-HF mice was progressive with aging and by 9 months after delivery had increased 2-fold above the levels of controls. The expansion of white adipose tissue (WAT) of Preg-HF mice was manifested by hyperplasia in visceral fat and hypertrophy in subcutaneous fat. Preg-HF mice developed low energy expenditure and UCP1 expression in interscapular brown adipose tissue (iBAT) in later life. Although blood estrogen concentrations were similar between Preg-HF and control mice, a significant decrease in estrogen receptor α (ERα) expression and hypermethylation of the ERα promoter was detected in the fat of Preg-HF mice 9 months after delivery. Interestingly, hypermethylation of ERα promoter and low ERα expression were only detected in adipocyte progenitor cells in both iBAT and WAT of Preg-HF mice at the end of gestation.ConclusionsThese results demonstrate that HFFDG causes long-term postpartum obesity independent of early postpartum fat retention. This study also suggests that HFFDG adversely programs long-term postpartum energy metabolism by epigenetically reducing estrogen signaling in both BAT and WAT
Structural Insights of Non-canonical U*U Pair and Hoogsteen Interaction Probed with Se Atom
Unlike DNA, in addition to the 20 -OH group, uracil nucleobase and its modifications play essential roles in structure and function diversities of non- coding RNAs. Non-canonical U.U base pair is ubiquitous in non-coding RNAs, which are highly diversified. However, it is not completely clear how uracil plays the diversifing roles. To investigate and compare the uracil in U-A and U.U base pairs, we have decided to probe them with a selenium atom by synthesizing the novel 4-Se-uridine (SeU) phosphoramidite and Se-nucleobase-modified RNAs (SeU-RNAs), where the exo-4-oxygen of uracil is replaced by selenium. Our crystal structure studies of U-A and U.U pairs reveal that the native and Se-derivatized structures are virtually identical, and both U-A and U.U pairs can accommodate large Se atoms. Our thermostability and crystal structure studies indicate that the weakened H-bonding in U-A pair may be compensated by the base stacking, and that the stacking of the trans- Hoogsteen U.U pairs may stabilize RNA duplex and its junction. Our result confirms that the hydrogen bond (O4.. .H-C5) of the Hoogsteen pair is weak. Using the Se atom probe, our Se- functionalization studies reveal more insights into the U.U interaction and U-participation in structure and function diversification of nucleic acids
Wnt Signaling Cross-Talks with JH Signaling by Suppressing Met and gce Expression
Juvenile hormone (JH) plays key roles in controlling insect growth and metamorphosis. However, relatively little is known about the JH signaling pathways. Until recent years, increasing evidence has suggested that JH modulates the action of 20-hydroxyecdysone (20E) by regulating expression of broad (br), a 20E early response gene, through Met/Gce and Kr-h1. To identify other genes involved in JH signaling, we designed a novel Drosophila genetic screen to isolate mutations that derepress JH-mediated br suppression at early larval stages. We found that mutations in three Wnt signaling negative regulators in Drosophila, Axin (Axn), supernumerary limbs (slmb), and naked cuticle (nkd), caused precocious br expression, which could not be blocked by exogenous JHA. A similar phenotype was observed when armadillo (arm), the mediator of Wnt signaling, was overexpressed. qRT-PCR revealed that Met, gce and Kr-h1expression was suppressed in the Axn, slmb and nkd mutants as well as in arm gain-of-function larvae. Furthermore, ectopic expression of gce restored Kr-h1 expression but not Met expression in the arm gain-of-function larvae. Taken together, we conclude that Wnt signaling cross-talks with JH signaling by suppressing transcription of Met and gce, genes that encode for putative JH receptors. The reduced JH activity further induces down-regulation of Kr-h1expression and eventually derepresses br expression in the Drosophila early larval stages
Er-Xian Decoction Stimulates Osteoblastic Differentiation of Bone Mesenchymal Stem Cells in Ovariectomized Mice and Its Gene Profile Analysis
We studied the bone mesenchymal stem cells (bMSCs) and gene profiles regulated by Er-Xian Decoction (EXD), a traditional Chinese herbal formula widely used for postmenopausal osteoporosis treatment. Six-month-old female Imprinting Control Region mice that underwent ovariectomy were treated with EXD. After 3 months, bone mass was evaluated by μCT and histological and immunohistochemical detection. The self-renewal and differentiation capacities of bMSCs were evaluated by colony-forming unit-fibroblastic, colony-forming unit-adipocyte, and alkaline phosphatase staining. In addition, the expression of 26991 genes of bMSCs ex vivo at 2 weeks after EXD-treatment or of bMSCs in vitro after exposure to conditioned serum from EXD-treated rats was measured and analyzed using NimbleGen Gene Expression Profiling and Cluster and pathway analysis. EXD treatment increased bone mass, elevating osteocalcin protein levels in vivo and facilitating the self-renewal and osteoblastic differentiation of bMSCs ex vivo. EXD rescued several gene expressions that were dysregulated by OVX. These genes overlapped and their functions were involved in ten pathways between ex vivo and in vitro experiments. EXD exerts an osteogenic effect on bMSCs in OVX induced osteoporotic mice. Our results contribute to further study of its molecular mechanism and traditional use in the treatment of postmenopausal osteoporosis
- …