969 research outputs found

    GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger

    Full text link
    This work describes the development of a high-resolution tactile-sensing finger for robot grasping. This finger, inspired by previous GelSight sensing techniques, features an integration that is slimmer, more robust, and with more homogeneous output than previous vision-based tactile sensors. To achieve a compact integration, we redesign the optical path from illumination source to camera by combining light guides and an arrangement of mirror reflections. We parameterize the optical path with geometric design variables and describe the tradeoffs between the finger thickness, the depth of field of the camera, and the size of the tactile sensing area. The sensor sustains the wear from continuous use -- and abuse -- in grasping tasks by combining tougher materials for the compliant soft gel, a textured fabric skin, a structurally rigid body, and a calibration process that maintains homogeneous illumination and contrast of the tactile images during use. Finally, we evaluate the sensor's durability along four metrics that track the signal quality during more than 3000 grasping experiments.Comment: RA-L Pre-print. 8 page

    Gate defined quantum dot realized in a single crystalline InSb nanosheet

    Full text link
    Single crystalline InSb nanosheet is an emerging planar semiconductor material with potential applications in electronics, infrared optoelectronics, spintronics and topological quantum computing. Here we report on realization of a quantum dot device from a single crystalline InSb nanosheet grown by molecular-beam epitaxy. The device is fabricated from the nanosheet on a Si/SiO2 substrate and the quantum dot confinement is achieved by top gate technique. Transport measurements show a series of Coulomb diamonds, demonstrating that the quantum dot is well defined and highly tunable. Tunable, gate-defined, planar InSb quantum dots offer a renewed platform for developing semiconductor-based quantum computation technology.Comment: 12 pages, 4 figure

    Energy-Water Balance and Ecosystem Response to Climate Change in Southwest China

    Get PDF
    It is important to highlight energy-water balance and ecosystem response to climate changes. The change of water-energy balance and ecosystem due to climate change will affect the regional ecological and human living significantly, especially in Southwest China which is an ecologically fragile area. This chapter presents the retrieval methodology of parameters (reconstruction of vegetation index, land cover semi-automatic classification, a time series reconstruction of land surface temperature based on Kalman filter and precipitation interpolation based on thin plate smoothing splines), time-series analysis methodology (land cover change, vegetation succession and drought index) and correlate analysis methodology (correlation coefficient and principal component analysis). Then, based on the above method, remote sensing data were integrated, a time series analysis on a 30-year data was used to illustrate the water-energy balance and ecosystem variability in Southwest China. The result showed that energy-water balance and ecosystem (ecosystem structures, vegetation and droughts) have severe response to climate change

    PASS-JOIN: A Partition-based Method for Similarity Joins

    Full text link
    As an essential operation in data cleaning, the similarity join has attracted considerable attention from the database community. In this paper, we study string similarity joins with edit-distance constraints, which find similar string pairs from two large sets of strings whose edit distance is within a given threshold. Existing algorithms are efficient either for short strings or for long strings, and there is no algorithm that can efficiently and adaptively support both short strings and long strings. To address this problem, we propose a partition-based method called Pass-Join. Pass-Join partitions a string into a set of segments and creates inverted indices for the segments. Then for each string, Pass-Join selects some of its substrings and uses the selected substrings to find candidate pairs using the inverted indices. We devise efficient techniques to select the substrings and prove that our method can minimize the number of selected substrings. We develop novel pruning techniques to efficiently verify the candidate pairs. Experimental results show that our algorithms are efficient for both short strings and long strings, and outperform state-of-the-art methods on real datasets.Comment: VLDB201
    • …
    corecore