slides

PASS-JOIN: A Partition-based Method for Similarity Joins

Abstract

As an essential operation in data cleaning, the similarity join has attracted considerable attention from the database community. In this paper, we study string similarity joins with edit-distance constraints, which find similar string pairs from two large sets of strings whose edit distance is within a given threshold. Existing algorithms are efficient either for short strings or for long strings, and there is no algorithm that can efficiently and adaptively support both short strings and long strings. To address this problem, we propose a partition-based method called Pass-Join. Pass-Join partitions a string into a set of segments and creates inverted indices for the segments. Then for each string, Pass-Join selects some of its substrings and uses the selected substrings to find candidate pairs using the inverted indices. We devise efficient techniques to select the substrings and prove that our method can minimize the number of selected substrings. We develop novel pruning techniques to efficiently verify the candidate pairs. Experimental results show that our algorithms are efficient for both short strings and long strings, and outperform state-of-the-art methods on real datasets.Comment: VLDB201

    Similar works

    Full text

    thumbnail-image

    Available Versions