27 research outputs found

    Surface chromium on Terracotta Army bronze weapons is neither an ancient anti-rust treatment nor the reason for their good preservation.

    Get PDF
    For forty years, there has been a widely held belief that over 2,000 years ago the Chinese Qin developed an advanced chromate conversion coating technology (CCC) to prevent metal corrosion. This belief was based on the detection of chromium traces on the surface of bronze weapons buried with the Chinese Terracotta Army, and the same weapons' very good preservation. We analysed weapons, lacquer and soils from the site, and conducted experimental replications of CCC and accelerated ageing. Our results show that surface chromium presence is correlated with artefact typology and uncorrelated with bronze preservation. Furthermore we show that the lacquer used to cover warriors and certain parts of weapons is rich in chromium, and we demonstrate that chromium on the metals is contamination from nearby lacquer after burial. The chromium anti-rust treatment theory should therefore be abandoned. The good metal preservation probably results from the moderately alkaline pH and very small particle size of the burial soil, in addition to bronze composition

    Integrative omics reveals rapidly evolving regulatory sequences driving primate brain evolution

    Get PDF
    Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease

    Microstructure Analysis and Quality Evaluation of Jujube Slices Dried by Hot Air Combined with Radio Frequency Heat Treatment at Different Drying Stages

    No full text
    Jujubes have been favored by consumers because of their rich nutrition and wide use. Hot air drying has been commercially and typically used to prolong shelf life and acquire the dried produce. Jujube slices were dried with hot air combined with radio frequency (RF) at different drying stages, namely, early (0–2 h, E-HA + RF), middle (2–4 h, M-HA + RF), later (4–6 h, L-HA + RF), and whole (0–6 h, W-HA + RF) stages. This study aimed to investigate the effects of different RF application stages on the microstructure, moisture absorption rate, color, and ascorbic acid of jujube slices. Compared with the hot air drying (HA) group, the E-HA + RF group obtained the best results among the experimental groups because it reduced the cells with a roundness of less than 0.4 by 5%. Moreover, the M-HA + RF group showed better results than those of other groups, with an 18.6% and 48.8% reduction in cells for a cross-sectional area less than 200 µm2 and a perimeter less than 25 µm, respectively. The minimum total color difference (ΔE = 9.21 ± 0.31) and maximum retention of ascorbic acid (285.06 mg/100 g) were also observed in this group. Therefore, the method of hot air drying assisted by phased RF is viable in the drying industry to improve the quality of dried agricultural products and reduce energy consumption

    A genome-wide scan for copy number variations using high-density single nucleotide polymorphism array in Simmental cattle

    No full text
    Copy number variations (CNVs) have recently been identified as promising sources of genetic variation, complementary to single nucleotide polymorphisms (SNPs). As a result, detection of CNVs has attracted a great deal of attention. In this study, we performed genome-wide CNV detection using Illumina Bovine HD BeadChip (770k) data on 792 Simmental cattle. A total of 263 CNV regions (CNVRs) were identified, which included 137 losses, 102 gains and 24 regions classified as both loss and gain, covering 35.48Mb (1.41%) of the bovine genome. The length of these CNVRs ranged from 10.18kb to 1.76Mb, with an average length of 134.78kb and a median length of 61.95kb. In 136 of these regions, a total of 313 genes were identified related to biological functions such as transmembrane activity and olfactory transduction activity. To validate the results, we performed quantitative PCR to detect nine randomly selected CNVRs and successfully confirmed seven (77.6%) of them. Our results present a map of cattle CNVs derived from high-density SNP data, which expands the current CNV map of the cattle genome and provides useful information for investigation of genomic structural variation in cattle

    Genome-wide association study identifies loci and candidate genes for meat quality traits in Simmental beef cattle

    No full text
    Improving meat quality is the best way to enhance profitability and strengthen competitiveness in beef industry. Identification of genetic variants that control beef quality traits can help breeders design optimal breeding programs to achieve this goal. We carried out a genome-wide association study for meat quality traits in 1141 Simmental cattle using the Illumina Bovine HD 770K SNP array to identify the candidate genes and genomic regions associated with meat quality traits for beef cattle, including fat color, meat color, marbling score, longissimus muscle area, and shear force. In our study, we identified twenty significant single-nucleotide polymorphisms (SNPs) (p < 1.47 x 10(-6)) associated with these five meat quality traits. Notably, we observed several SNPs were in or near eleven genes which have been reported previously, including TMEM236, SORL1, TRDN, S100A10, AP2S1, KCTD16, LOC506594, DHX15, LAMA4, PREX1, and BRINP3. We identified a haplotype block on BTA13 containing five significant SNPs associated with fat color trait. We also found one of 19 SNPs was associated with multiple traits (shear force and longissimus muscle area) on BTA7. Our results offer valuable insights to further explore the potential mechanism of meat quality traits in Simmental beef cattle

    Pathway-based genome-wide association studies for two meat production traits in Simmental cattle

    No full text
    Most single nucleotide polymorphisms (SNPs) detected by genome-wide association studies (GWAS), explain only a small fraction of phenotypic variation. Pathway-based GWAS were proposed to improve the proportion of genes for some human complex traits that could be explained by enriching a mass of SNPs within genetic groups. However, few attempts have been made to describe the quantitative traits in domestic animals. In this study, we used a dataset with approximately 7,700,000 SNPs from 807 Simmental cattle and analyzed live weight and longissimus muscle area using a modified pathway-based GWAS method to orthogonalise the highly linked SNPs within each gene using principal component analysis (PCA). As a result, of the 262 biological pathways of cattle collected from the KEGG database, the gamma aminobutyric acid (GABA) ergic synapse pathway and the non-alcoholic fatty liver disease (NAFLD) pathway were significantly associated with the two traits analyzed. The GABAergic synapse pathway was biologically applicable to the traits analyzed because of its roles in feed intake and weight gain. The proposed method had high statistical power and a low false discovery rate, compared to those of the smallest P-value and SNP set enrichment analysis methods
    corecore