311 research outputs found

    Study on the Performance of New Imidazoline Electromigration Inhibitor in Reinforced Concrete

    Get PDF
    Steel bars inside reinforced concrete easily become corroded in high chloride environments, bidirectional electromigration rehabilitation is an important method of repairing the durability of reinforced concrete, it can migrate chloride out of concrete and transfer electromigration inhibitor to the surface of the steel bar under the action of an electric field. In this paper, autonomous synthesis electromigration inhibitor was used with bidirectional electromigration rehabilitation to repair the durability of reinforced concrete. Specifically, the effect of a new imidazoline corrosion inhibitor on chloride migration, corrosion potential, and reinforcement of concrete strength was explored. The research results showed that the dechlorination effect and electrochemical dechlorination made no significant difference on the surface of the concrete, where chlorine removal efficiency was more than 70% and the location of steel efficiency of chlorine was more than 90%. The autonomous synthesis electromigration inhibitor was found to be excellent at facilitating chloride migration and ameliorating corrosion, meanwhile, it had a negligible impact on the concrete strength

    Cerenkov Luminescence Tomography for In Vivo Radiopharmaceutical Imaging

    Get PDF
    Cerenkov luminescence imaging (CLI) is a cost-effective molecular imaging tool for biomedical applications of radiotracers. The introduction of Cerenkov luminescence tomography (CLT) relative to planar CLI can be compared to the development of X-ray CT based on radiography. With CLT, quantitative and localized analysis of a radiopharmaceutical distribution becomes feasible. In this contribution, a feasibility study of in vivo radiopharmaceutical imaging in heterogeneous medium is presented. Coupled with a multimodal in vivo imaging system, this CLT reconstruction method allows precise anatomical registration of the positron probe in heterogeneous tissues and facilitates the more widespread application of radiotracers. Source distribution inside the small animal is obtained from CLT reconstruction. The experimental results demonstrated that CLT can be employed as an available in vivo tomographic imaging of charged particle emitters in a heterogeneous medium

    Experimental Validation of DeeP-LCC for Dissipating Stop-and-Go Waves in Mixed Traffic

    Full text link
    We present results on the experimental validation of leading cruise control (LCC) for connected and autonomous vehicles (CAVs). In a mixed traffic situation that is dominated by human-driven vehicles, LCC strategies are promising to smooth undesirable stop-and-go waves. Our experiments are carried out on a mini-scale traffic platform. We first reproduce stop-and-go traffic waves in a miniature scale, and then show that these traffic instabilities can be dissipated by one or a few CAVs that utilize Data-EnablEd Predicted Leading Cruise Control (DeeP-LCC). Rather than identifying a parametric traffic model, DeeP-LCC relies on a data-driven non-parametric behavior representation for traffic prediction and CAV control. DeeP-LCC also incorporates input and output constraints to achieve collision-free guarantees for CAVs. We experimentally demonstrate that DeeP-LCC is able to dissipate traffic waves caused by car-following behavior and significantly improve both driving safety and travel efficiency. CAVs utilizing DeeP-LCC may bring additional societal benefits by mitigating stop-and-go waves in practical traffic.Comment: 8 pages, 6 figure

    HIV Vulnerability in Out-of-School Adolescents and Youth in Yunnan, China

    Get PDF
    This study investigated multiple aspects of vulnerability to HIV in out-of-school adolescents and youth in Yunnan Province, a high HIV risk region in China. The findings show that socially disadvantaged adolescents and youth were overrepresented in the out-of-school young people in Yunnan. The out-of-school young people in Yunnan exhibited 1) limited knowledge about HIV transmission and prevention, 2) a high prevalence of unprotected sexual activity, 3) high exposure to illicit drugs and alcohol use and a high prevalence of drug use in themselves, and 4) limited access to health services. There is an indication of higher exposure to risk behaviours in the younger age group. The study population used multiple media, particularly television, internet and radio, to obtain information about HIV transmission and pre- vention, particularly in the younger age group. These media may be an effective way of reaching this population in fu- ture HIV education and prevention programs in the region

    Droplets microfluidics platform—A tool for single cell research

    Get PDF
    Cells are the most basic structural and functional units of living organisms. Studies of cell growth, differentiation, apoptosis, and cell-cell interactions can help scientists understand the mysteries of living systems. However, there is considerable heterogeneity among cells. Great differences between individuals can be found even within the same cell cluster. Cell heterogeneity can only be clearly expressed and distinguished at the level of single cells. The development of droplet microfluidics technology opens up a new chapter for single-cell analysis. Microfluidic chips can produce many nanoscale monodisperse droplets, which can be used as small isolated micro-laboratories for various high-throughput, precise single-cell analyses. Moreover, gel droplets with good biocompatibility can be used in single-cell cultures and coupled with biomolecules for various downstream analyses of cellular metabolites. The droplets are also maneuverable; through physical and chemical forces, droplets can be divided, fused, and sorted to realize single-cell screening and other related studies. This review describes the channel design, droplet generation, and control technology of droplet microfluidics and gives a detailed overview of the application of droplet microfluidics in single-cell culture, single-cell screening, single-cell detection, and other aspects. Moreover, we provide a recent review of the application of droplet microfluidics in tumor single-cell immunoassays, describe in detail the advantages of microfluidics in tumor research, and predict the development of droplet microfluidics at the single-cell level

    Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics

    Full text link
    Disorders of consciousness are a heterogeneous mixture of different diseases or injuries. Although some indicators and models have been proposed for prognostication, any single method when used alone carries a high risk of false prediction. This study aimed to develop a multidomain prognostic model that combines resting state functional MRI with three clinical characteristics to predict one year outcomes at the single-subject level. The model discriminated between patients who would later recover consciousness and those who would not with an accuracy of around 90% on three datasets from two medical centers. It was also able to identify the prognostic importance of different predictors, including brain functions and clinical characteristics. To our knowledge, this is the first implementation reported of a multidomain prognostic model based on resting state functional MRI and clinical characteristics in chronic disorders of consciousness. We therefore suggest that this novel prognostic model is accurate, robust, and interpretable.Comment: Although some prognostic indicators and models have been proposed for disorders of consciousness, each single method when used alone carries risks of false prediction. Song et al. report that a model combining resting state functional MRI with clinical characteristics provided accurate, robust, and interpretable prognostications. 52 pages, 1 table, 7 figure

    Long-Range Temporal Correlations of Patients in Minimally Conscious State Modulated by Spinal Cord Stimulation

    Get PDF
    Spinal cord stimulation (SCS) has been shown to improve the consciousness levels of patients with disorder of consciousness (DOC). However, the underlying mechanisms of SCS remain poorly understood. This study recorded resting-state electroencephalograms (EEG) from 16 patients with minimally conscious state (MCS), before and after SCS, and investigated the mechanisms of SCS on the neuronal dynamics in MCS patients. Detrended fluctuation analysis (DFA), combined with surrogate data method, was employed to measure the long-range temporal correlations (LRTCs) of the EEG signals. A surrogate data method was utilized to acquire the genuine DFA exponents (GDFAE) reflecting the genuine LRTCs of brain activity. We analyzed the GDFAE in four brain regions (frontal, central, posterior, and occipital) at five EEG frequency bands [delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz)]. The GDFAE values ranged from 0.5 to 1, and showed temporal and spatial variation between the pre-SCS and the post-SCS states. We found that the channels with GDFAE spread wider after SCS. This phenomenon may indicate that more cortical areas were engaged in the information integration after SCS. In addition, the GDFAE values increased significantly in the frontal area at delta, theta, and alpha bands after SCS. At the theta band, a significant increase in GDFAE was observed in the occipital area. No significant change was found at beta or gamma bands in any brain region. These findings show that the enhanced LRTCs after SCS occurred primarily at low-frequency bands in the frontal and occipital regions. As the LRTCs reflect the long-range temporal integration of EEG signals, our results indicate that information integration became more “complex” after SCS. We concluded that the brain activities at low-frequency oscillations, particularly in the frontal and occipital regions, were improved by SCS
    corecore