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Spinal cord stimulation (SCS) has been shown to improve the consciousness
levels of patients with disorder of consciousness (DOC). However, the underlying
mechanisms of SCS remain poorly understood. This study recorded resting-state
electroencephalograms (EEG) from 16 patients with minimally conscious state (MCS),
before and after SCS, and investigated the mechanisms of SCS on the neuronal
dynamics in MCS patients. Detrended fluctuation analysis (DFA), combined with
surrogate data method, was employed to measure the long-range temporal correlations
(LRTCs) of the EEG signals. A surrogate data method was utilized to acquire the genuine
DFA exponents (GDFAE) reflecting the genuine LRTCs of brain activity. We analyzed
the GDFAE in four brain regions (frontal, central, posterior, and occipital) at five EEG
frequency bands [delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–45 Hz)]. The GDFAE values ranged from 0.5 to 1, and showed temporal
and spatial variation between the pre-SCS and the post-SCS states. We found that
the channels with GDFAE spread wider after SCS. This phenomenon may indicate that
more cortical areas were engaged in the information integration after SCS. In addition,
the GDFAE values increased significantly in the frontal area at delta, theta, and alpha
bands after SCS. At the theta band, a significant increase in GDFAE was observed in the
occipital area. No significant change was found at beta or gamma bands in any brain
region. These findings show that the enhanced LRTCs after SCS occurred primarily
at low-frequency bands in the frontal and occipital regions. As the LRTCs reflect the
long-range temporal integration of EEG signals, our results indicate that information
integration became more “complex” after SCS. We concluded that the brain activities at
low-frequency oscillations, particularly in the frontal and occipital regions, were improved
by SCS.

Keywords: spinal cord stimulation, minimally conscious state, electroencephalogram, long-range temporal
correlations, detrended fluctuation analysis
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INTRODUCTION

Disorder of consciousness (DOC) is a state of prolonged altered
consciousness (Eapen et al., 2016). Patients with DOC can be
subdivided into minimally conscious state (MCS) and vegetative
state (VS) according to their behavioral signs of awareness.
Patients with MCS show inconsistent, but discernible signs of
consciousness such as command-following or other purposeful
behaviors (Giacino et al., 2002).

It has been suggested that spinal cord stimulation (SCS)
is an effective brain intervention technique for patients with
MCS (Georgiopoulos et al., 2010; Mattogno et al., 2017). SCS
has several advantages over deep brain stimulation such as its
simplicity, its lesser degree of invasiveness, and its programmable
parameters (Bai et al., 2017a). To date, the underlying
mechanisms of SCS and its effects on neural responsiveness
remain poorly understood (Visocchi et al., 2001; Yamamoto
et al., 2012). The effects of SCS in MCS patients can be assessed
by several electroencephalography (EEG) measurements (Bai
et al., 2017a,b) including entropies, detrended fluctuation analysis
(DFA) (D’Rozario et al., 2013), neuronal oscillation coupling
(Köster et al., 2014), and integrated information based features
(Gallimore, 2015). Entropy is an important measure of both the
randomness and the disorder of a dynamic system (Carhart-
Harris et al., 2014). Both sample entropy and permutation
entropy have been shown to be effective at distinguishing states of
consciousness (i.e., wakefulness, deep sevoflurane, and isoflurane
anesthesia) (Wang et al., 2014; Liang et al., 2015). Approximate
entropy has been found to decrease during the transition from
wakefulness to sleep. During wakefulness, it has been shown to be
higher in adults than in children (Lee et al., 2013). The coupling
strength of narrow-band neuronal oscillations in brain networks
has also been shown to be correlated with consciousness (Buzsaki
and Draguhn, 2004). Previous studies have suggested that
the synchronization of neuronal oscillations is correlated with
sensory, motor, and cognitive events (Varela et al., 2001; Jacobs
and Kahana, 2010). Based on the synchronization phenomenon
in neuronal activities, many measures, such as phase-amplitude
coupling, coherence, and phase synchronization, have been
proposed for consciousness assessment (Liang et al., 2016; Bai
et al., 2017b; Pal et al., 2017). Our previous study has suggested
that bicoherence, global synchronization (Bai et al., 2017a), as
well as global and local networks (Bai et al., 2017b), can be altered
by SCS with 70 Hz in MCS patients.

In addition to the features mentioned above, it has also been
hypothesized that consciousness emerges from the critical state of
brain activity. The hierarchy of long-range temporal correlations
(LRTCs) implies the long-term memory of a brain system (Zhang
et al., 2018). In the temporo-spatial theory of consciousness
(TTC), LRTCs are postulated to be a core mechanism of
consciousness (Northoff and Huang, 2017). They exist in “scale-
free” systems based on fractal theory (Richard et al., 2012).
“Scale-free” systems involve two phenomena: self-similarity and
self-affinity. Self-similarity means that a small part of the fractal
structure is similar to the entire structure, while self-affinity
indicates that the properties of a fractal scale are different along
various dimensions (Mandelbrot, 1999). These two phenomena

cannot be easily characterized by their respective means and
standard deviations (Eke et al., 2000). Therefore, “scale-free”
systems can only be measured by the power–law function, with
only a mathematical function, without a typical scale (Richard
et al., 2012). Accordingly, DFA is widely used to analyze the
scale-free time series (Palva et al., 2013) with three correlation
properties of the signals: (1) uncorrelated scaling (DFA > 1),
correlated scaling (0.5 < DFA < 1), and anti-correlated scaling
(0 < DFA < 0.5) (Hu et al., 2001). The correlated scaling
(0.5 < DFA < 1), also known as LRTC, indicates long-range
temporal dependency characteristics of the time series. Many
studies have investigated the LRTCs of the neural signals under
general anesthesia (Krzeminski et al., 2017; Zhang et al., 2018),
during sleep (Tagliazucchi et al., 2013; Allegrini et al., 2015), and
in states of self-consciousness (Huang et al., 2016). These studies
have found that the brain dynamics present robust LRTCs during
conscious states. Whereas, the LRTCs are disrupted during
unconscious states. Given that the LRTCs can reflect complex
neural information processing, we hypothesize that the effect
of SCS can be measured by LRTCs in the long-range temporal
dependency framework. Based on this hypothesis, this study
combines the DFA and the surrogate data method to measure the
genuine LRTCs. We then investigate the temporo-spatial changes
of genuine LRTCs of the EEG signals in MCS patients during SCS.

MATERIALS AND METHODS

Subjects
The eligibility criteria for the subjects were: (1) patients had
been diagnosed as MCS by the JFK Coma Recovery Scale-
Revised (CRS-R) (Kalmar and Giacino, 2005); (2) patients were
in stable clinical states; and (3) there were no confounding
complications (e.g., infections). This study was approved by the
ethics committee of the PLA Army General Hospital. Informed
consent to participate in the study was obtained from legal
representatives of the patients.

Data Recording and Preprocessing
EEG recording was conducted at least 3 weeks after the SCS
surgical procedure. Treatments other than SCS that could modify
neural excitability were avoided during EEG recording. The
SCS stimulation protocol follows our previous study (Bai et al.,
2017a), summarized as follows: The SCS stimulator (Prime
Advanced, Medtronic Inc., Minneapolis, MN, United States) was
placed under the anterior chest wall. The stimulation frequency
was set at 70 Hz, based on clinical experience. The amplitude
and duration of the pulses were 3 V and 210 µs, respectively.
The stimulator produced a periodic voltage difference between
the two stimulation electrodes, with a duration of 20 min. The
electrodes sent pulses to stimulate the specific level of the spinal
cord. All subjects were in the supine position, and in a wakeful
state, throughout the study. If the subjects showed to be in a
sleep state (i.e., prolonged eye closure or sleep waveforms, such
as spindles or K-complex waves appearing in the EEG), the study
would be paused. The JFK CRS-R arousal facilitation protocol
would then be performed to arouse the subjects.
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A 10 min EEG was recorded both before and after SCS.
A 32-channel EEG cap (BrainAmp 64 MRplus, Brain Products,
Germany) with Ag/AgCl electrodes was used for EEG recording.
Electrode positioning was based on the international 10–20
electrode placement system, as shown in Figure 1. The sampling
rate of the system was 1 kHz. A conductive EEG gel was used
to remove cutin and oil from subjects’ scalps. The electrode–skin
impedance of subjects was decreased to less than 5 k� before the
recording.

The EEG signal preprocessing was conducted with EEGLAB
(version 12.0.2.5b) in a MATLAB environment (Version, 2014a,
MathWorks Inc.; Natick, MA, United States). Continuous data
segments with significant noise were rejected based on visual
inspection. The 50 Hz power frequency artifact was removed
by the notch filter. The EEG data was filtered into 1–45 Hz
and downsampled to 100 Hz using symmetric finite impulse
response filters (MATLAB function firls.m) and the MATLAB
function resample.m, respectively. The relevant components of
the artifacts, such as eye movements and muscle activities, were
identified and removed by the independent component analysis
function in EEGLAB. After pre-processing, the EEG signals were
divided into five frequency bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

Genuine DFA Exponent (GDFAE)
We combined the DFA and the surrogate data method to evaluate
the effect of SCS at different oscillation bands. DFA is a classic
measure of the LRTCs of EEG activity (Peng et al., 1995). It
quantifies the fluctuations of a time series based on the power-
law method. DFA can systematically remove the trend of each
order from the data. Thus, it has a robust effect against noise.

FIGURE 1 | Schematic of space participation of five regions for 32-channel
EEG. The seven channels in the red ellipse constituted the frontal region (F).
The seven channels in the green ellipse were divided into the central region
(C). The yellow ellipse comprised nine channels represents the parietal region
(P). The blue ellipse comprised nine channels represents the occipital region
(O). T3 and T4 in the gray circles were classified into the temporal region.

The surrogate data method has been widely applied to constrain
spurious detection in non-linear analysis (Dolan and Spano,
2001). In this study, surrogate data tests were utilized to acquire
the GDFAEto reflect the genuine LRTCs of brain activities. The
flow chart of the algorithm and the step-by-step results are shown
in Figures 2, 3, respectively.

The GDFAE can be obtained in three steps. The detailed
process is as follows:

Step 1: Calculating the original DFA exponent of the EEG
data.
(1) Remove the mean value xave of the amplitude
envelope of the EEG time series x (t) to obtain a series
independent of the global linear trend. The cumulative
sum of the detrended amplitude y

(
k
)

is calculated as:

FIGURE 2 | Flow diagram for GDFAE calculation.
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FIGURE 3 | Step-by-step illustration of DFAE calculation. (A) Delta band preprocessed EEG signals totaling 6 min (3 min before SCS and 3 min after SCS) from
participant No. 2 at channel FP2. The red dash line denotes the SCS. (B) Delta band EEG signals of 30 s were extracted from the two states (blue line) and
amplitude envelope (black line). (C) Detrended cumulative amplitude, without the global linear trend, of both states. (D) LDCA of time window of length 6.3 s (top),
3.2 s (middle), and 2.0 s (bottom); the thick dash line parallel to the timeline represents the time windows, the length of each piece on behalf of the length of the time
window–green for 6.3 s, pink for 3.2 s, and orange for 2.0 s. (E) The fitting of the logarithmic fluctuation function for both real EEG signals and surrogate EEG data
performed for the pre-SCS state; red asterisks and hollow blue circles represent the real and the surrogate EEG respectively. The big asterisks correspond to the
same color time window in panel (D). The red and black lines are the linear regression fitted lines. To obtain a reliable exponent, the log times (windows) in the gray
area were excluded from the linear regression. The windows which are too narrow (in the lower left corner) exhibit inherently steeper scaling, whereas windows too
large (i.e., those in the upper right corner) may induce the lacking of data for reliably estimating the variability. The right part is the corresponding slope (DFAE) value
of the function. The blue circles represent DFAEsurr and the red asterisk represents DFAEoriginal . This significance test shows that this channel, in this state, is a
spurious DFA channel. Thus, the GDFAE = 0. (F) The fitting of the logarithmic fluctuation function for the post-SCS state. Similar to panel (E), but the significance
test showed that it is a genuine DFA channel in this state (GDFAE = DFAEoriginal = 0.9251).
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y
(
k
)
=
∑k

i=1
[
x
(
k
)
− xave

]
, where xave =

1
N
∑N

i=1 x (i), N
indicates the length of x (t). The new time series y

(
k
)

is
called the global detrended cumulative amplitude (gDCA).
To clarify the DFA procedure, sequences of 30 s were
extracted and calculated for the presentation. The extracted
data of 30 s from both states (pink rectangle in Figure 3A)
and their amplitude envelopes, are shown in Figure 3B.
The gDCA for both states (pre- and post-SCS) were thus
obtained (Figure 3C).
(2) The gDCA y

(
k
)

was divided into several non-
overlapping subsequences of length l. Each subsequence
corresponded to a time window, and the length of the time
windows was defined as eight times larger than the filter
order and eight times smaller than the recording length
(Hardstone et al., 2012). The least squares method (LSM)
was applied to fit the trend of each time window as a
straight line yn

(
k
)
= aik+ bi, where ai and bi were the

undetermined coefficients. In each time window, yn
(
k
)

was
subtracted from the primary y

(
k
)

to remove the local trend.
The fluctuation function F

(
l
)

was quantified as a square
deviation function, that is, the average root mean square
of the locally detrended cumulative amplitude (LDCA) as
follows:

F
(
l
)
=

√√√√ 1
N

N∑
k=1

[
y
(
k
)
− yn

(
k
)]2 (1)

All fluctuation functions F
(
l
)

of the time windows of
different length l were calculated, where l is defined
equidistantly on a logarithmic scale. Figure 3D shows the
LDCA of a time window with lengths of 6.3 s (top), 3.2 s
(middle), and 2.0 s (bottom).
(3) The fluctuation function F

(
l
)

and window length l were
transformed into a logarithmic coordinate, and LSM was
used to estimate the linear trend and slope α of the fitted
line. α is also commonly referred to as the Hurst scaling
exponent H (Colombo et al., 2016) or the DFA exponent
(Krzeminski et al., 2017). The DFA exponent of the original
EEG was abbreviated as DFAEoriginal. In Figures 3E,F, the
green, pink, and orange asterisks correspond to the time
windows of 6.3, 3.2, and 2.0 s in (D), respectively.
Step 2: Calculating the surrogate data set for the original
EEG signals.
First, the real recorded EEG signals x (n) were transformed
into the frequency domain X

(
k
)

by the discrete Fourier
transform as follows: X

(
k
)
=
∑N−1

n=0 x (n) e−j2πkn/N .
Second, a uniform random sequence v

(
k
)

was produced.
The phase spectra of X

(
k
)

was replaced by the random
sequence v

(
k
)

with the amplitude spectra of X
(
k
)

remaining unchanged, that is, S
(
k
)
=
∣∣X (k)∣∣ ejv(k).

The existing spurious temporal correlations in the
signal were replaced, but the spectrum shape was
preserved. Finally, the surrogate data were obtained
through the inverse discrete Fourier transform
s (n) = 1

N
∑N−1

k=0 S
(
k
)

ej2πkn/N(Schreiber and Schmitz,

1996, 2000). For the frequency band of each channel, 30
groups of surrogate data were produced.
Step 3: Obtaining the GDFAE at each frequency band.
The surrogate DFA exponents were calculated for each
band and termed DFAEsurr . The Wilcoxon signed-rank
test (signrank.m) was applied to eliminate any spurious
DFA exponents. The DFAEsurr was tested with DFAEoriginal.
Their difference sequence was tested with the hypothesis
that the element in the sequence comes from a distribution
with a median of 0. The significance threshold was set to the
95% confidence level. If the null hypothesis was rejected at
the 5% level (p < 0.05 and h = 1), the DFAEoriginal would be
different from the distribution of 30. Thus, the DFAEoriginal
was the exact GDFAE. Otherwise, the DFAEoriginal would
have been considered a spurious LRTC value. This can also
be described as follows:

GDFAE =
{

DFAEoriginal : h = 1, p < 0.05
null : otherwise (2)

The GDFAE describes the robust correlation characteristics
of a time series (Colombo et al., 2016). When GDFAE=0.5,
the signals are white noise with no autocorrelation.
When GDFAE=1, the signals are 1/f noise. When 0.5 <
GDFAE < 1, the signals are temporally anti-correlated.
When 0.5 < GDFAE < 1, the recorded EEG signals are
positive temporal correlations, that is, LRTCs. Thus, the
neural activity at a given time could potentially have been
influenced by the neural activities which had occurred
several minutes before (Maxim et al., 2005; He, 2011).
Figures 3E,F present the surrogate analysis of two EEG
periods. The logarithmic function and the corresponding
window length for the real EEG (red asterisks) and the
surrogate data (blue circle) are fitted in the red and black
lines, respectively. The right part of Figure 3E shows the
distribution of the DFAE for the real EEG (DFAEoriginal)
and the surrogate EEG (DFAEsurr). DFAEoriginal is not
distinctly different from the distribution of DFAEsurr . This
indicates that this EEG segment lacks genuine LRTCs
(GDFAE = 0). Conversely, Figure 3F shows the GDFAE,
which has genuine LRTCs.

In the DFA measurement, selecting the size of the windows
for linear fitting is crucial (Kantelhardt et al., 2001). If the length
of each window is too large, there will not be enough windows
for calculation, and the results may be inaccurate. Although
this problem can be alleviated by overlapping windows, window
length must be no larger than 10% of the signal length (Hardstone
et al., 2012). Conversely, if the length of each window is too
short, more scaling will be observed in the fluctuation function.
With the increasing length of the windows, the scaling behavior
will converge asymptotically. The lengths of the windows (l)
are represented equidistantly on a logarithmic scale (see in
Figure 3E). The latter, because of the fluctuation functions [F

(
l
)
]

and the corresponding l, will be transformed into a logarithmic
coordinate to obtain slope α. Linear fitting was performed only
for windows in which the fluctuation function depicted a straight
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line to get a reliable exponent α. To eliminate the edge effect, we
used an automated process (Fell et al., 2000). First, a histogram
of the first derivative for each pair of the adjacent fluctuation
data was plotted. Second, the majority of the derivative values
were grouped together. Finally, the 90th percentile value of the
distribution was chosen as the threshold for fitting (Krzeminski
et al., 2017).

Statistical Analysis
This study evaluated the changes in LRTCs after SCS in MCS
patients. We analyzed the GDFAE in different brain regions, at
different frequency bands, before and after SCS. Considering the
multi-factor effects, a three-way repeated analysis of variance
(three-way ANOVA; anovan.m) was applied to analyze the
interactions and the main effects of the three factors: (I) brain
states (two levels: pre- and post- SCS), (II) frequency bands
(five levels: delta, theta, alpha, beta, and gamma), and (III) brain
regions (four levels: frontal, central, parietal, and occipital). After
obtaining the interactions and the main effects of the three
factors, a post hoc test with the Bonferroni correction was used to
determine the significant difference of the GDFAE values between
the two states in each brain region, at each frequency band.

RESULTS

According to the eligibility criteria, 16 MCS patients were
enrolled in this study. Their demographic data and clinical
diagnoses are presented in Table 1. According to our previous
study, the EEG channels were divided into five regions. The
frontal region (F): FP1, FP2, Fz, F3, F4, F7, and F8; the central
region (C): FC1, FC2, FC5, FC6, Cz, C3, and C4; the parietal
region (P): CP1, CP2, CP5, CP6, Pz, P3, P4, P7, and P8 (Figure 1);
the occipital region (O): PO3, PO4, PO7, PO8, Oz, O1, and O2;
the temporal region: T3 and T4. Since the temporal region only

TABLE 1 | Patient demographics.

Subject CRS-R Etiology Post_injury (months)

1 8 Hemorrhage 18

2 9 Hemorrhage 5

3 10 Traumatism 9

4 10 Hemorrhage 12

5 7 Ischemia-hypoxia 4

6 8 Ischemia-hypoxia 3

7 7 Hemorrhage 10

8 9 Traumatism 3

9 7 Hemorrhage 5

10 7 Hemorrhage 4

11 7 Ischemia-hypoxia 3

12 7 Hemorrhage 11

13 10 Ischemia-hypoxia 4

14 8 Traumatism 13

15 8 Ischemia-hypoxia 4

16 9 Hemorrhage 6

CRS-R, coma recovery scale-revised.

included two channels, we excluded the temporal region from the
analysis of the changes in LRTCs.

The EEG spectra of all channels were calculated to reveal the
changes in EEG oscillation after SCS. To illustrate this, Figure 4
shows the power spectra of one subject in which the power was
concentrated at the delta and theta bands. The spectra of the
different channels was diverse. The power of the high frequency
bands (beta and gamma) increased after SCS in most channels
such as FP1, FP2, and F7. In some of the channels, such as FC1,
FC2, and CZ, it did not. The color bar was set from−25 to 20 dB
to highlight the differences between the two states (pre- and post-
SCS). The maximum power differential between the pre-SCS and
the post-SCS state was 15 dB.

Then, the DFAEoriginal and DFAEsurr of each channel, at
each frequency band, were calculated to obtain the GDFAE.
If the DFAEoriginal deviated from the distribution of DFAEsurr ,
this indicated that the EEG data in this state had genuine
LRTCs. Figure 5 shows the distribution of the genuine and
spurious LRTCs at each frequency band for one subject, both
before and after SCS. The quantity of genuine LRTCs channels
increased after SCS. However, the significant increases in spatial
distribution were not consistent for each frequency band. The
proportions of genuine LRTC channels at each frequency band
are presented in Table 2. The results indicate that at all five
frequency bands, the spatial distribution of the genuine LRTCs
broadened after SCS.

To explore how SCS modulated the LRTCs at different
frequency bands, the averaged GDFAE values of the 32 channels
for each subject, at each neural oscillation band (delta, theta,
alpha, beta, and gamma), were calculated. The descriptive
statistics for the averaged GDFAE in the pre-SCS and post-
SCS states are presented in Figure 6. The mean and standard
deviation values in Figure 6 are listed in Table 3. The value of
the averaged exponents in both states ranged from 0.5 to 1. The
GDFAE values at the delta, theta, and alpha bands were larger
than those at the high-frequency bands (i.e., beta and gamma).
The mean values of the averaged GDFAE increased significantly
in the post-SCS state compared to those from the pre-SCS state,
especially at the delta (p = 0.039), theta (p = 0.021), and alpha
(p = 0.032) bands. The results of the multiple comparison test are
shown in Figure 6. Furthermore, the standard deviation of the
GDFAE was smaller at the alpha band than it was at the other
frequency bands.

To analyze the effect of SCS on different spatial regions,
the GDFAE values of the five frequency bands were analyzed
(including four brain regions). The topoplot function in EEGLAB
was applied to obtain a two-dimensional topographical map of
the GDFAE value. The spatial distributions of the averaged non-
zero GDFAE values of the 16 subjects at each frequency band
are presented in Figure 7. Non-zero GDFAE values ranged from
0.5 to 1, indicating that the EEG dynamics were presented in
the LRTCs. Moreover, the LRTCs were stronger in the post-SCS
state at the delta, theta, and alpha frequency bands (Figure 7).
Lastly, the spatial distribution showed an increase in the frontal
and occipital regions.

The GDFAE statistics for all 16 patients are shown as box
plots in Figure 8. Three-way ANOVA and a multiple comparison
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FIGURE 4 | The power spectrum of 32 channels in the corresponding position of one participant (No. 1 in Table 1). The spectrum was computed with the
short-time Fourier transform with a Hamming window. The blue represents the lower power and the dark red represents the higher power. The black line in each
spectrum block represents the interposition of the SCS.

FIGURE 5 | Surrogate data results for one participant (No. 7 in Table 1). (A,B) are the spatial distribution of the genuine and spurious DFA channels at five frequency
bands, at pre- and post-SCS states. The solid red circle represents the genuine DFA channel and the black crosses represent the spurious DFA channel.
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TABLE 2 | The proportion of the significant GDFAE in pre- and post-SCS stage, at different frequency bands [Median (min–max)].

Delta Theta Alpha Beta Gamma

Pre-SCS 0.91 (0.84–1.00) 0.87 (0.75–0.97) 0.92 (0.91–0.94) 0.92 (0.78–1.00) 0.88 (0.75–1.00)

Post-SCS 0.94 (0.91–1.00) 0.93 (0.72–1.00) 0.93 (0.81–1.00) 0.93 (0.81–1.00) 0.93 (0.88–1.00)

FIGURE 6 | Descriptive statistics for the averaged GDFAE for all patients. This includes the bar (mean) and the error bar (standard deviation) of the averaged GDFAE
at five frequency bands, at pre- and post-SCS states. The asterisk denotes a p-value less than 0.05 in multiple comparison test, with Bonferroni correction.

TABLE 3 | Descriptive statistics for average GDFAE of each participant in pre- and post-SCS stages, at different frequency bands (mean ± SD).

Delta Theta Alpha Beta Gamma

Pre-SCS 0.809 ± 0.052 0.770 ± 0.042 0.750 ± 0.034 0.643 ± 0.033 0.642 ± 0.052

Post-SCS 0.835 ± 0.070 0.797 ± 0.049 0.769 ± 0.024 0.653 ± 0.044 0.653 ± 0.050

FIGURE 7 | (A) Spatial distribution topographic of the non-zero GDFAE at each frequency band in pre-SCS state. (B) Topographic of the post-SCS state.
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FIGURE 8 | Box plot of the GDFAE for all 16 patients. Each graphic includes both states of all four regions at one frequency band. The symbol “∗∗∗” denotes a
p-value less than 0.001, “∗∗” denotes a p-value less than 0.01, and “∗” denotes a p-value less than 0.05.

test (multcompare.m) with the Bonferroni correction were used
to test significance. The three-way ANOVA analysis showed the
interactions and the main effects of the three factors [state (I),
frequency band (II), and brain region (III)]. The interactions of
I∗II and I∗III were both significant (p < 0.001 and p < 0.05,
respectively). This indicated that the changes in the GDFAE after
SCS were related to the brain regions and frequency bands. In
other words, the variation between the pre- and the post-SCS
GDFAE in different brain regions or at different frequency bands
varied in degree. The main effects of factor I were significant
(p < 0.001), indicating that the GDFAE values in pre- and post-
SCS states were significantly different. A multiple comparison
test analyzed the difference between the pre- and post-SCS for
the different brain regions and frequency bands. We used the
Bonferroni correction for the number of frequency bands and
brain regions to account for the repetition of testing. Figure 8
shows that the GDFAE significantly increased at delta, theta
and alpha bands after SCS. At the delta band, the significant
increase was in the frontal region (p < 0.001). At the theta
band, a significant increase was found in the frontal (p < 0.05)
and occipital regions (p < 0.001). A significant increase at the
alpha band was also observed in the frontal region (p < 0.001).
However, no significant increase or decrease was found at the
beta or gamma bands in any brain region. The indices in the box
plots were not normally distributed (Lilliefors test). Therefore,
all indices were expressed as medians (min–max), and are listed
in Table 4. The p-values of the significance test for the GDFAE
statistics are shown in Table 5.

DISCUSSION

This study investigated the dynamic brain activity changes in pre-
and post-SCS state of MCS patients. The GDFAE was employed
to assess the LRTCs of EEG signals, recorded from 16 MCS
patients. We analyzed the GDFAE changes in different brain

regions, at different frequency bands. The results indicated that
the LRTCs in the post-SCS state were more enhanced than those
in the pre-SCS state, in some regions and frequency bands. The
main findings are as follows: (i) The proportion of the non-zero
GDFAE in the post-SCS state was higher than that of the pre-
SCS state [i.e., the quantity of channels with GDFAE increased
at all frequency bands in the post-SCS state (Table 2)]. This
indicated that the long-range temporal integration became more
widespread after SCS. (ii) The GDFAE value increased after SCS,
especially at the lower frequency bands (delta, theta, and alpha).
The increased GDFAE suggested that the LRTCs in this neural
oscillation had become stronger after SCS. (iii) The LRTCs of the
frontal region significantly increased in the post-SCS state at the
delta, theta, and alpha frequency bands. The occipital region also
showed a significant increase at the alpha band (Figure 8 and
Table 5). The dominant enhancement of LRTCs in the frontal
region and at the alpha frequency band could provide more
evidence for the potential mechanisms of SCS in modulating the
brain activities of MCS patients.

This study utilized the DFA method. In addition to DFA,
other measures and theories have been proposed to analyze
the EEG signals. Among them, entropy is an important non-
linear method. Both the fluctuation of the entropy and the DFA
exponents of the EEG signals can indicate the complexity of the
brain system (Lee et al., 2004; Morabito et al., 2012). However,
when applied to pathologic signals, DFA is recommended
over entropy due to its capability to discriminate and predict
the occurrence of a pathological state (e.g., epileptic seizure)
(Cirugeda-Roldán et al., 2012).

According to the DFA methodology, the LRTCs in EEG
signals are related to conscious behaviors. The larger fluctuation
corresponded to the strengthening of the long-term memory of
the underlying neural processes. When the LRTCs are weakened,
the information integration tends to break down or decline
(Thiery et al., 2018). For example, Krzeminski et al. (2017) found
a breakdown in LRTCs at the alpha frequency band during
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TABLE 4 | Descriptive statistics for GDFAE in different brain regions in pre- and post-SCS stages, at different frequency bands [Median (min–max)].

Delta Theta Alpha Beta Gamma

Pre-F 0.81 (0.77–0.86) 0.76 (0.72–0.80) 0.74 (0.71–0.77) 0.68 (0.60–0.73) 0.62 (0.60–0.70)

Post-F 0.86 (0.79–0.91) 0.78 (0.74–0.83) 0.77 (0.75–0.80) 0.65 (0.62–0.71) 0.64 (0.60–0.70)

Pre-C 0.81 (0.75–0.85) 0.77 (0.74–0.81) 0.75 (0.71–0.78) 0.63 (0.60–0.68) 0.64 (0.60–0.69)

Post-C 0.83 (0.75–0.90) 0.78 (0.75–0.84) 0.76 (0.73–0.79) 0.66 (0.61–0.70) 0.63 (0.60–0.70)

Pre-P 0.81 (0.77–0.86) 0.77 (0.73–0.81) 0.75 (0.71–0.80) 0.60 (0.60–0.68) 0.62 (0.60–0.66)

Post-P 0.83 (0.74–0.89) 0.78 (0.75–0.82) 0.77 (0.74–0.80) 0.64 (0.61–0.67) 0.63 (0.60–0.69)

Pre-O 0.79 (0.76–0.83) 0.76 (0.73–0.80) 0.73 (0.70–0.79) 0.62 (0.59–0.66) 0.60 (0.57–0.67)

Post-O 0.81 (0.76–0.87) 0.81 (0.76–0.86) 0.77 (0.73–0.80) 0.62 (0.60–0.66) 0.63 (0.60–0.70)

Pre-F, pre-SCS stage in frontal region; Post-F, post-SCS stage in frontal region; Pre-C, pre-SCS stage in central region; Post-C, post-SCS stage in central region; Pre-P,
pre-SCS stage in parietal region; Post-P, post-SCS stage in parietal region; Pre-O, pre-SCS stage in occipital region; Post-O, post-SCS stage in occipital region.

TABLE 5 | p-Value of the significance test for the GDFAE statistics in Figure 8.

Delta Theta Alpha Beta Gamma

F 1.108e-04 0.035 3.149e-05 0.782 1.000

C 0.100 0.275 0.461 0.996 0.937

P 0.442 0.758 0.761 1.000 0.215

O 0.756 2.469e-07 0.178 0.995 0.929

general anesthesia. The DFA exponents decreased from the value
associated with wakeful state to that of general anesthesia. The
authors hypothesized that the brain activity exhibited robust
LRTCs, and thus could be disrupted during general anesthesia.
A similar phenomenon has also been observed during sleep
with a decrease in long-term memory in the default mode and
attention networks (Tagliazucchi et al., 2013). Insomnia has also
been found to be related to LRTCs. Individuals who experienced
worse sleep quality tended to have stronger LRTCs during
wakefulness (Colombo et al., 2016). Furthermore, the LRTCs
could be controlled by engaging an intrinsic neuroregulation
through a closed-loop neuro-feedback stimulation–the LRTCs
were found to be stronger during stimulation (Zhigalov et al.,
2016). Based on the studies mentioned above, the fluctuations in
the LRTCs were related to neural behaviors. Thus, in our results,
the increased LRTCs may indicate that a more “complex” cortical
information integration is restored after the SCS. From the
perspective of complexity, various studies have shown that loss
of consciousness is correlated with a decrease in complexity, such
as in general anesthesia (Alonso et al., 2014; Liang et al., 2015;
Schartner et al., 2015; Hudetz et al., 2016) and sleep (Priesemann
et al., 2013). We concluded that the SCS increases brain dynamics
in MCS patients.

After SCS, not only did the value of GDFAE increase,
but the non-zero (genuine) proportion of DFA increased as
well. To obtain the genuine proportion of DFA, the DFA was
combined with the surrogate data method. The crux of the
surrogate data method is to eliminate the non-linear correlation
by reconstructing the power spectrum while maintaining the
same linear feature. The advantage of surrogate data is that
it preserves the linear stochastic structure and the amplitude
distribution of the original series (Lucio et al., 2012). The
two most commonly used algorithms for generating surrogate
data are the amplitude-adjusted Fourier transform (AAFT)

and the iterated AAFT (Rath and Monetti, 2008). The AAFT
is considered a robust surrogate data-generated method and
requires less computation than other methods (Pritchard et al.,
2010). Using the AAFT, a GDFAE can be achieved that can
reflect genuine LRTCs. If the DFAE is not genuine, there
will be no LRTCs. Our results showed that the genuine
LRTCs are spread more widely after the SCS. Also, more
cortical areas were engaged in information integration after
the SCS.

The results of this study have also revealed that most
of the increased LRTCs occurred at the delta, theta, and
alpha frequency bands. This suggests a frequency specificity
for the LRTCs in MCS patients. Several other pathological
investigations have found that the frequency-specific of LRTCs,
such as the theta-band LRTCs, decreases in patients with major
depression disorder (Linkenkaer-Hansen et al., 2005). Alpha-
band LRTCs have also been shown to decrease in patients with
Alzheimer’s disease (Montez et al., 2009). In propofol-induced
unconsciousness, no frequency-specific LRTCs were observed
(Krzeminski et al., 2017). It has been speculated that cross-
frequency interactions play a key role in this phenomenon. The
temporal dynamic changes at one frequency band may affect
other bands, given that the lower frequency oscillations (i.e.,
delta, theta, and alpha bands) in MCS patients are typically
different from those of healthy subjects (Fingelkurts et al.,
2012).

The spatial statistics showed that the GDFAE significantly
increased in the frontal region at the delta (p < 0.001), theta
(p < 0.05), and alpha (p < 0.001) band. The frontal cortex region
is responsible for the higher cognitive functions (Frith and Dolan,
1996; María et al., 2010), providing an area for various networks
to play out different scenarios (Mesulam, 2002). Yampolsky et al.
(2012), suggested that the frontal cortex is vital for awareness
and attention. The present study found that the LRTCs increased
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primarily in the frontal region after SCS, at both the delta and
alpha bands. As higher cognitive functions are correlated with
the prefrontal region, we hypothesized that SCS could affect
these MCS functions by enhancing the temporal integration.
The LRTCs also significantly increased in the occipital region
at the theta band (p < 0.001). It has been suggested that the
occipital cortex is involved in language processing (Bedny et al.,
2011). Tosoni et al. (2015) have found that the occipital cortex
is related to coherent visual motion and responding. Therefore,
the significantly enhanced LRTCs in the occipital region after SCS
indicate that SCS may impact MCS patients’ brain functions, such
as language processing and visual functions.

LIMITATIONS

This study has two limitations. First, the GDFAE indices had
a range of 0.6–1 (from the pre-SCS to the post-SCS state).
Krzeminski et al. (2017) found that the DFA was 0.9 in a wakened
state and 0.6 under general anesthesia at the alpha oscillation in
electrocorticographic data recordings. In our study, after the SCS,
the DFA exponents of some patients passed 0.9, but these patients
remained in MCS. We could not confirm whether the high DFA
(>=0.9) meant that the patients had been conscious after the SCS.
However, the relative changes in the GDFAE indices revealed the
tendency for change in the complex brain system. Furthermore,
an arbitrary quantification based on one parameter to assess the
complex brain system is limited. Further studies should consider
the multi-dimensional features to analyze the mechanism of the
SCS (Kim et al., 2018). The multi-dimensional features should be
considered to analyze the mechanism of the SCS in further studies
(Kim et al., 2018). Second, as the brain activities of MCS patients
have pathological oscillations, the dynamics of the system are

different from those in a normal brain. The finding that LRTCs
are correlated with consciousness has been established from
studies of healthy brain tissue. Similar conclusions should be
interpreted cautiously for MCS patients.

CONCLUSION

The SCS showed a strong effect on EEG signals in patients with
MCS whose long-range temporal integrations of brain activity
had significantly increased (at low-frequency bands) in the
frontal and occipital regions. Considering its close relationship
with level of consciousness, we suggest that the GDFAE could
serve as a new tool to explore the mechanisms of SCS in MCS
patients.
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