210 research outputs found
Spin-orbit interaction of light induced by transverse spin angular momentum engineering
We report the first demonstration of a direct interaction between the
extraordinary transverse spin angular momentum in evanescent waves and the
intrinsic orbital angular momentum in optical vortex beams. By tapping the
evanescent wave of whispering gallery modes in a micro-ring-based optical
vortex emitter and engineering the transverse spin state carried therein, a
transverse-spin-to-orbital conversion of angular momentum is predicted in the
emitted vortex beams. Numerical and experimental investigations are presented
for the proof-of-principle demonstration of this unconventional interplay
between the spin and orbital angular momenta, which could provide new
possibilities and restrictions on the optical angular momentum manipulation
techniques on the sub-wavelength scale. This phenomenon further gives rise to
an enhanced spin-direction coupling effect in which waveguide or surface modes
are unidirectional excited by incident optical vortex, with the directionality
jointly controlled by spin-orbit states. Our results enrich the spin-orbit
interaction phenomena by identifying a previously unknown pathway between the
polarization and spatial degrees of freedom of light, and can enable a variety
of functionalities employing spin and orbital angular momenta of light in
applications such as communications and quantum information processing
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency
Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture
For long distance orbital angular momentum (OAM) based transmission, the conventional whole beam receiving scheme encounters the difficulty of large aperture due to the divergence of OAM beams. We propose a novel partial receiving scheme, using a restricted angular aperture to receive and demultiplex multi-OAM-mode beams. The scheme is theoretically analyzed to show that a regularly spaced OAM mode set remain orthogonal and therefore can be de-multiplexed. Experiments have been carried out to verify the feasibility. This partial receiving scheme can serve as an effective method with both space and cost savings for the OAM communications. It is applicable to both free space OAM optical communications and radio frequency (RF) OAM communications
Quantitative Planar Laser-Induced Fluorescence Technology
Planar laser-induced fluorescence (PLIF) is a highly sensitive and space-time-resolved laser diagnostic technique. It is widely used in the diagnosis of combustion and flow fields to obtain the thermodynamic information of active components and interested molecules in flames. Nowadays, the PLIF technology is developing in two directions: high speed and quantification. In view of the high spatial and temporal resolution characteristics of PLIF technology that other laser diagnostics do not possess, this chapter will focus on the basic principle of laser-induced fluorescence and the current research status of quantitative PLIF technology. In addition, the advantages and disadvantages of various quantitative technologies of component concentration in flames based on laser-induced fluorescence technology are analyzed. At last, the latest works on the quantification of species concentration using planar laser-induced fluorescence in combustion are introduced
Parallel Gaussian Process Regression for Big Data: Low-Rank Representation Meets Markov Approximation
The expressive power of a Gaussian process (GP) model comes at a cost of poor
scalability in the data size. To improve its scalability, this paper presents a
low-rank-cum-Markov approximation (LMA) of the GP model that is novel in
leveraging the dual computational advantages stemming from complementing a
low-rank approximate representation of the full-rank GP based on a support set
of inputs with a Markov approximation of the resulting residual process; the
latter approximation is guaranteed to be closest in the Kullback-Leibler
distance criterion subject to some constraint and is considerably more refined
than that of existing sparse GP models utilizing low-rank representations due
to its more relaxed conditional independence assumption (especially with larger
data). As a result, our LMA method can trade off between the size of the
support set and the order of the Markov property to (a) incur lower
computational cost than such sparse GP models while achieving predictive
performance comparable to them and (b) accurately represent features/patterns
of any scale. Interestingly, varying the Markov order produces a spectrum of
LMAs with PIC approximation and full-rank GP at the two extremes. An advantage
of our LMA method is that it is amenable to parallelization on multiple
machines/cores, thereby gaining greater scalability. Empirical evaluation on
three real-world datasets in clusters of up to 32 computing nodes shows that
our centralized and parallel LMA methods are significantly more time-efficient
and scalable than state-of-the-art sparse and full-rank GP regression methods
while achieving comparable predictive performances.Comment: 29th AAAI Conference on Artificial Intelligence (AAAI 2015), Extended
version with proofs, 10 page
A Coaxially Integrated Photonic Orbital Angular Momentum Beam Multiplexer
We demonstrate an integrated photonic orbital angular momentum beam multiplexer consisting of four nested arc waveguide gratings. Well-defined OAM mode emissions over wide bandwidth of 1-nm enables simultaneous wavelength division multiplexing and OAM multiplexing
Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems
With the amplitude, time, wavelength/frequency, phase, and polarization/spin parameter dimensions of the light wave/photon almost fully utilized in both classical and quantum photonic information systems, orbital angular momentum (OAM) carried by optical vortex modes is regarded as a new modal parameter dimension for further boosting the capacity and performance of the systems. To exploit the OAM mode space for such systems, stringent performance requirements on a pair of OAM mode multiplexer and demultiplexer (also known as mode sorters) must be met. In this work, we implement a newly discovered optical spiral transformation to achieve a low-cross-Talk, wide-opticalbandwidth, polarization-insensitive, compact, and robust OAM mode sorter that realizes the desired bidirectional conversion between seven co-Axial OAM modes carried by a ring-core fiber and seven linearly displaced Gaussian-like modes in parallel single-mode fiber channels. We further apply the device to successfully demonstrate high-spectralefficiency and high-capacity data transmission in a 50-km OAM fiber communication link for the first time, in which a multi-dimensional multiplexing scheme multiplexes eight orbital-spin vortex mode channels with each mode channel simultaneously carrying 10 wavelength-division multiplexing channels, demonstrating the promising potential of both the OAM mode sorter and the multi-dimensional multiplexed OAM fiber systems enabled by the device. Our results pave the way for futureOAM-based multi-dimensional communication systems
- …