194 research outputs found

    Influence of hole-drilling diameter on aluminum alloy residual stress measurement

    Get PDF
    A hole-drilling method and finite element (FEM) numerical simulation are used to estimate the residual stress of aluminum alloy welding joints. In order to study the influence of hole diameter on measurement accuracy, a group of experiments are conducted. Experiment results show that the measuring error can be the minimal when the drilling hole diameter is 4 mm. Residual stress of 2219-T87 aluminum alloy welding joints under this optimal hole diameter are obtained. The distribution of the residual stress from the welding seam to the outward is first tensile stress and then compressive stress. And the maximum residual stress is 123.2 MPa

    Dynamics simulation study on civil aircraft planned pavement emergency landing

    Get PDF
    Engine pylon is one of the most important components of large civil aircraft, playing an essential role in structure connecting and load bearing. It is chosen as the research target, and a full sized engine-pylon-wing finite element model is established. By conducting the simulations of different landing and impacting conditions, dynamical responses and separation status of the pylon are obtained. Some main factors that affect the pylon’s separation are found out on the basis of preliminary analysis. The reasonable pylon separations for belly landing with small pitch angles and dead-stick landing are achieved. At last, further measures to improve the modeling method and achieve better pylon separations are discussed based on a comparative analysis of all the simulation results. The proposed dynamical modeling method along with the emergency landing parameters and simulation results can provide certain reference to similar studies, pylon structure designs and validation tests

    Soliton solution of the osmosis K(2, 2) equation

    Full text link
    In this Letter, by using the bifurcation method of dynamical systems, we obtain the analytic expressions of soliton solution of the osmosis K(2, 2) equation.Comment: 8 page

    Secure Wireless Communication via Movable-Antenna Array

    Full text link
    Movable antenna (MA) array is a novel technology recently developed where positions of transmit/receive antennas can be flexibly adjusted in the specified region to reconfigure the wireless channel and achieve a higher capacity. In this letter, we, for the first time, investigate the MA array-assisted physical-layer security where the confidential information is transmitted from a MA array-enabled Alice to a single-antenna Bob, in the presence of multiple single-antenna and colluding eavesdroppers. We aim to maximize the achievable secrecy rate by jointly designing the transmit beamforming and positions of all antennas at Alice subject to the transmit power budget and specified regions for positions of all transmit antennas. The resulting problem is highly non-convex, for which the projected gradient ascent (PGA) and the alternating optimization methods are utilized to obtain a high-quality suboptimal solution. Simulation results demonstrate that since the additional spatial degree of freedom (DoF) can be fully exploited, the MA array significantly enhances the secrecy rate compared to the conventional fixed-position antenna (FPA) array

    Movable Antennas-Enabled Two-User Multicasting: Do We Really Need Alternating Optimization for Minimum Rate Maximization?

    Full text link
    Movable antenna (MA) technology, which can reconfigure wireless channels by flexibly moving antenna positions in a specified region, has great potential for improving communication performance. In this paper, we consider a new setup of MAs-enabled multicasting, where we adopt a simple setting in which a linear MA array-enabled source (S{\rm{S}}) transmits a common message to two single-antenna users U1{\rm{U}}_1 and U2{\rm{U}}_2. We aim to maximize the minimum rate among these two users, by jointly optimizing the transmit beamforming and antenna positions at S{\rm{S}}. Instead of utilizing the widely-used alternating optimization (AO) approach, we reveal, with rigorous proof, that the above two variables can be optimized separately: i) the optimal antenna positions can be firstly determined via the successive convex approximation technique, based on the rule of maximizing the correlation between S{\rm{S}}-U1{\rm{U}}_1 and S{\rm{S}}-U2{\rm{U}}_2 channels; ii) afterwards, the optimal closed-form transmit beamforming can be derived via simple arguments. Compared to AO, this new approach yields the same performance but reduces the computational complexities significantly. Moreover, it can provide insightful conclusions which are not possible with AO

    Fluid Antennas-Enabled Multiuser Uplink: A Low-Complexity Gradient Descent for Total Transmit Power Minimization

    Full text link
    We investigate multiuser uplink communication from multiple single-antenna users to a base station (BS), which is equipped with a movable-antenna (MA) array and adopts zero-forcing receivers to decode multiple signals. We aim to optimize the MAs' positions at the BS, to minimize the total transmit power of all users subject to the minimum rate requirement. After applying transformations, we show that the problem is equivalent to minimizing the sum of each eigenvalue's reciprocal of a matrix, which is a function of all MAs' positions. Subsequently, the projected gradient descent (PGD) method is utilized to find a locally optimal solution. In particular, different from the latest related work, we exploit the eigenvalue decomposition to successfully derive a closed-form gradient for the PGD, which facilitates the practical implementation greatly. We demonstrate by simulations that via careful optimization for all MAs' positions in our proposed design, the total transmit power of all users can be decreased significantly as compared to competitive benchmarks

    Re-evaluation of the carcinogenic significance of hepatitis B virus integration in hepatocarcinogenesis

    Get PDF
    To examine the role of hepatitis B virus (HBV) integration in hepatocarcinogenesis, a systematic comparative study of both tumor and their corresponding non-tumor derived tissue has been conducted in a cohort of 60 HBV associated hepatocellular carcinoma (HCC) patients. By using Alu-polymerase chain reaction (PCR) and ligation-mediated PCR, 233 viral-host junctions mapped across all human chromosomes at random, no difference between tumor and non-tumor tissue was observed, with the exception of fragile sites (P = 0.0070). HBV insertions in close proximity to cancer related genes such as hTERT were found in this study, however overall they were rare events. No direct correlation between chromosome aberrations and the number of HBV integration events was found using a sensitive array-based comparative genomic hybridization (aCGH) assay. However, a positive correlation was observed between the status of several tumor suppressor genes (TP53, RB1, CDNK2A and TP73) and the number of chromosome aberrations (r = 0.6625, P = 0.0003). Examination of the viral genome revealed that 43% of inserts were in the preC/C region and 57% were in the HBV X gene. Strikingly, approximately 24% of the integrations examined had a breakpoint in a short 15 nt viral genome region (1820-1834 nt). As a consequence, all of the confirmed X gene insertions were C-terminal truncated, losing their growth-suppressive domain. However, the same pattern of X gene C-terminal truncation was found in both tumor and non-tumor derived samples. Furthermore, the integrated viral sequences in both groups had a similar low frequency of C1653T, T1753V and A1762T/G1764A mutations. The frequency and patterns of HBV insertions were similar between tumor and their adjacent non-tumor samples indicating that the majority of HBV DNA integration events are not associated with hepatocarcinogenesis
    • …
    corecore