1,320 research outputs found

    Effects of nitrogen-free species on NO removal performance by coal pyrolysis gas via reactive molecular dynamics simulations

    Get PDF
    Coal splitting and reburning is a promising technology to control NO emissions during coal combustion. During this process, coal pyrolysis gas is used as reburn fuel to convert NO to N2. Nitrogen-containing compounds (HCN and NH3) play dominant roles in the NO reduction performance. In this study, we investigated the influence of nitrogen-free species (CH4, CO and H2) in coal pyrolysis gas on the NO reduction by HCN and NH3 via reactive force field (ReaxFF) molecular dynamics (MD) simulations. The nitrogen distribution in products is determined and monitored during the process of NO removal by HCN and NH3 under different additives. In addition, mechanisms of NO reduction by HCN and NH3 are revealed, accounting for the changes of nitrogen distribution in the products at the atomic level. The present research provides new insights into the influence of CH4, CO and H2 on the NO reduction by HCN and NH3, which may be helpful to reduce the NOx emissions during coal combustion by optimising the nitrogen-free components of coal pyrolysis gas

    elcome@12Impact of oxygen and nitrogen-containing species on performance of NO removal by coal pyrolysis gas

    Get PDF
    Coal pyrolysis gas is considered a promising reburn fuel with excellent NO reduction performance because of the present of nitrogen-containing species (HCN and NH3) in the pyrolysis gas. In this study, we explored the effects of oxygen and nitrogen-containing species on NO removal performance with HCN and NH3 by reactive force field (ReaxFF) molecular dynamics (MD) simulations. Results indicate that appropriately reducing O2 concentrations and increasing the amount of nitrogen-containing species can benefit the NO reduction performance by coal pyrolysis gas. In addition, the effects of oxygen and nitrogen-containing species content on the NO removal and mechanisms of NO consumption and N2 formation are illustrated during NO reduction with HCN and NH3, respectively. Finally, based on the simulations results, practical operating strategies are proposed to optimize the NO reduction efficiency. In summary, this study provides new insights into NO reduction performance, which may contribute to optimizing the operating parameters to decrease NOx emissions during coal combustion

    A reactive molecular dynamics study of NO removal by nitrogen-containing species in coal pyrolysis gas

    Get PDF
    Coal splitting and staging is a promising technology to reduce nitrogen oxides (NOx) emissions from coal combustion through transforming nitrogenous pollutants into environmentally friendly gasses such as nitrogen (N2). During this process, the nitrogenous species in pyrolysis gas play a dominant role in NOx reduction. In this research, a series of reactive force field (ReaxFF) molecular dynamics (MD) simulations are conducted to investigate the fundamental reaction mechanisms of NO removal by nitrogen-containing species (HCN and NH3) in coal pyrolysis gas under various temperatures. The effects of temperature on the process and mechanisms of NO consumption and N2 formation are illustrated during NO reduction with HCN and NH3, respectively. Additionally, we compare the performance of NO reduction by HCN and NH3 and propose control strategies for the pyrolysis and reburn processes. The study provides new insights into the mechanisms of the NO reduction with nitrogen-containing species in coal pyrolysis gas, which may help optimize the operating parameters of the splitting and staging processes to decrease NOx emissions during coal combustion

    Theoretical exploration on the performance of single and dual-atom Cu catalysts on the COâ‚‚ electroreduction process: a DFT study

    Get PDF
    Carbon dioxide (CO2) electroreduction by metal–nitrogen-doped carbon (MNC) catalysts is a promising and efficient method to mitigate global warming by converting CO2 molecules to value-added chemicals. In this research, we systematically studied the behaviours of single and dual-atom Cu catalysts during the CO2 electroreduction process using density functional theory (DFT) calculations. Two structures, i.e., CuNC-4-pyridine and CuCuNC-4a, were found to be beneficial for C2 chemical generation with relatively high stabilities. Subsequently, we explored the detailed pathways of key products (CO, HCOOH, CH3OH, CH4, C2H6O, C2H4 and C2H6) during CO2 electroreduction on CuNC-4-pyridine and CuCuNC-4a. This research reveals the mechanisms of key product formation during CO2 electroreduction on CuNC-4-pyridine and CuCuNC-4a, which would provide important insights to guide the design of MNC catalysts with low limiting potentials and high product selectivity

    Investigation of the effect of DC electric field on a small ethanol diffusion flame

    Get PDF
    A small ethanol diffusion flame exhibited interesting characteristics under a DC electric field. A numerical study has been performed to elucidate the experimental observations. The flow velocity, chemical reaction rate, species mass fraction distribution, flame deformation and temperature of the flame in the applied DC electric field were considered. The results show that the applied electric field changes the flame characteristics mainly due to the body forces acting on charged particles in the electric field. The charged particles are accelerated in the applied electric field, resulting in the flow velocity increase. The effects on the species distribution are also discussed. It was found that the applied electric field promotes the fuel/oxidizer mixing, thereby enhancing the combustion process and leading to higher flame temperature. Flame becomes shorter with applied electric field and its deformation is related to the electric field strength. The study showed that it is feasible to use an applied DC electric field to control combustion and flame in small-scale

    Nitric oxide pollutant formation in high hydrogen content (HHC) syngas flames

    Get PDF
    Three-dimensional direct numerical simulations (DNS) of high hydrogen content (HHC) syngas nonpremixed jet flames with a Reynolds number of Re = 6000 have been carried out to study the nitric oxide (NO) pollutant formation. The detailed chemistry employed is the GRI 3.0 updated with the influence of the NCN radical chemistry using flamelet generated manifolds (FGM). Preferential diffusion effects have been considered via FGM tabulation and the reaction progress variable transport equation. The DNS based quantitative results indicate a strong correlation between the flame temperature and NO concentration for the pure hydrogen flame, in which NO formation is mainly characterised by the Zeldovich mechanism. The results also indicate a rapid decrease of maximum NO values in H2/CO syngas mixtures due to lower temperatures associated with the CO-dilution into H2. Results on NO formation routes in H2/CO syngas flames show that while the Zeldovich mechanism dominates the NO formation at low strain rates, the high NO formation rate at high strain rates is entirely caused by the NNH mechanism. We also found that the Fenimore mechanism has a least contribution on NO formation in H2/CO syngas flames due to absence of CH radicals in the oxidation of CO. It is found that, due to preferential diffusion, NO concentration exhibits higher values near the flame base depending on the hydrogen content in H2/CO syngas fuel mixture

    Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems

    Get PDF
    Molecular dynamics (MD) has evolved into a ubiquitous, versatile and powerful computational method for fundamental research in science branches such as biology, chemistry, biomedicine and physics over the past 60 years. Powered by rapidly advanced supercomputing technologies in recent decades, MD has entered the engineering domain as a first-principle predictive method for material properties, physicochemical processes, and even as a design tool. Such developments have far-reaching consequences, and are covered for the first time in the present paper, with a focus on MD for combustion and energy systems encompassing topics like gas/liquid/solid fuel oxidation, pyrolysis, catalytic combustion, heterogeneous combustion, electrochemistry, nanoparticle synthesis, heat transfer, phase change, and fluid mechanics. First, the theoretical framework of the MD methodology is described systemically, covering both classical and reactive MD. The emphasis is on the development of the reactive force field (ReaxFF) MD, which enables chemical reactions to be simulated within the MD framework, utilizing quantum chemistry calculations and/or experimental data for the force field training. Second, details of the numerical methods, boundary conditions, post-processing and computational costs of MD simulations are provided. This is followed by a critical review of selected applications of classical and reactive MD methods in combustion and energy systems. It is demonstrated that the ReaxFF MD has been successfully deployed to gain fundamental insights into pyrolysis and/or oxidation of gas/liquid/solid fuels, revealing detailed energy changes and chemical pathways. Moreover, the complex physico-chemical dynamic processes in catalytic reactions, soot formation, and flame synthesis of nanoparticles are made plainly visible from an atomistic perspective. Flow, heat transfer and phase change phenomena are also scrutinized by MD simulations. Unprecedented details of nanoscale processes such as droplet collision, fuel droplet evaporation, and CO2 capture and storage under subcritical and supercritical conditions are examined at the atomic level. Finally, the outlook for atomistic simulations of combustion and energy systems is discussed in the context of emerging computing platforms, machine learning and multiscale modelling

    An efficient ICT-based ratio/colorimetric tripodal azobenzene probe for the recognition/discrimination of F−, AcO− and H2PO4− anions

    Get PDF
    The tripodal probe L was readily prepared via introducing rhodamine and azobenzene groups in a two-step procedure. Studies of the recognition properties indicated that probe L exhibited high sensitivity and selectivity towards F−, AcO− and H2PO4− through a ratiometric colorimetric response with low detection limits of the order of 10−7 M. The complexation behaviour was fully investigated by spectral titration, 1H NMR spectroscopic titration and mass spectrometry. Probe L not only recognizes F−, AcO− and H2PO4−, but can also distinguish between these three anions via the different ratiometric behaviour in their UV–vis spectra (387/505 nm for L-H2PO4−, 387/530 nm for L-AcO− and 387/575 nm for L-F− complex) or via different colour changes (light coral for L-H2PO4−, light pink for L-AcO− and violet for the L-F− complex). Additionally, given the presence of NH and OH groups in probe L, which can be protonated and deprotonated, probe L further exhibited an excellent pH response over a wide pH range (pH 3 to pH 12)
    • …
    corecore