ELSEVIER

Contents lists available at ScienceDirect

Process Safety and Environmental Protection

journal homepage: www.journals.elsevier.com/process-safety-and-environmental-protection

Impact of oxygen and nitrogen-containing species on performance of NO removal by coal pyrolysis gas

Zhongze Bai ^a, Xi Zhuo Jiang ^{b,*}, Kai H. Luo ^{a,*}

- a Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- ^b School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, PR China

ARTICLE INFO

Keywords:

NO reduction

Oxygen and nitrogen-containing species
HCN

Reactive force field molecular dynamics

ABSTRACT

Coal pyrolysis gas is considered a promising reburn fuel with excellent NO reduction performance because of the present of nitrogen-containing species (HCN and NH $_3$) in the pyrolysis gas. In this study, we explored the effects of oxygen and nitrogen-containing species on NO removal performance with HCN and NH $_3$ by reactive force field (ReaxFF) molecular dynamics (MD) simulations. Results indicate that appropriately reducing O $_2$ concentrations and increasing the amount of nitrogen-containing species can benefit the NO reduction performance by coal pyrolysis gas. In addition, the effects of oxygen and nitrogen-containing species content on the NO removal and mechanisms of NO consumption and N $_2$ formation are illustrated during NO reduction with HCN and NH $_3$, respectively. Finally, based on the simulations results, practical operating strategies are proposed to optimize the NO reduction efficiency. In summary, this study provides new insights into NO reduction performance, which may contribute to optimizing the operating parameters to decrease NOx emissions during coal combustion.

1. Introduction

The nitrogen oxides (NOx) emissions from coal combustion cause serious environmental problems, such as photochemical smog and acid rain (Bowman, 1992). To mitigate its negative influence on environment during coal combustion, a few technologies have been invented recently. Those technologies can be divided into three categories: pre-combustion, combustion modification and post-combustion methods, where measures are implemented before, during and after the fuel combustion, respectively (Skalska et al., 2010). Among the many approaches, fuel reburning is a widely used, efficient and low-cost method to modify the fuel combustion process. It reduces NOx by transferring the generated NOx to harmless nitrogen (N2) by reburn fuels, and thus the reburn fuels play an important role in NOx control. Many fuels have been used as reburn fuels such as coal, oil, natural gas, pyrolysis gas, etc. Coal pyrolysis (also termed as coal splitting and staging) achieves better performance than other reburn fuels during coal combustion, where NOx formed during coal combustion is reduced by pyrolysis gas form coal itself (Greul et al., 1996). The biggest challenge of this technology is the precise control of the operating parameters. To reduce NOx emissions efficiently, it is necessary to study the influence of operating conditions on NOx removal performance.

Greul and co-workers carried out experimental studies on the coal splitting and staging process (Greul et al., 1996). They pointed out that the optimum air/fuel ratio was around 0.9, and the nitrogenous species in the pyrolysis gas determined the NOx reduction behaviours. The same conclusion was also corroborated by Rüdiger and co-workers' work, where they found that the increase of nitrogenous species content of coal pyrolysis gas could improve the NOx removal performance (Rüdiger et al., 1997). Previous studies have demonstrated that the oxygen concentrations for reduction process and nitrogen-containing species content in pyrolysis are two important parameters for NOx removal. However, the underlying mechanisms of NOx reduction by nitrogen-containing species are still lacking. It is of great interest and importance to study the NOx reduction by nitrogen-containing species in coal pyrolysis gas under varying operating conditions, which may be helpful to control NOx emissions from coal combustion.

There are two types of nitrogen-containing compounds in coal pyrolysis gas, that is, hydrogen cyanide (HCN) and ammonia (NH $_3$) (Liu and Guo, 2017; Bai et al., 2022a). Besides, NO is considered as the main component of NOx emissions (accounting for up to 95%) (Glarborg et al., 2003; Wang et al., 2007). A variety of studies have been performed to investigate the NO reduction by NH $_3$ molecules in the selective non-catalytic reduction (SNCR) process, including its mechanisms and

E-mail addresses: jiangxz@mail.neu.edu.cn (X.Z. Jiang), k.luo@ucl.ac.uk (K.H. Luo).

^{*} Corresponding authors.

temperature influence on NO abatement abilities (Klippenstein et al., 2011; Cao et al., 2008). However, the above studies were carried out under fuel-lean conditions differing from the optimum air/fuel ratio of coal splitting and staging process, which could affect the NO removal performance with NH3. In addition, the NO reduction process by HCN molecules has never been considered before. Recently, we investigated the underlying mechanisms during NO reduction by HCN and NH3 molecules under varying temperatures by simulations (Bai et al., 2022b). We compared the performance of HCN and NH3 in NO reduction process and the effects of temperature on their behaviours. We also investigated the influence of nitrogen-free species in coal pyrolysis gas on NO abatement behaviours (Bai et al., 2023a). However, a systematic comparison of the behaviours between the NO removal by HCN and NH3 under varying O_2 and nitrogen-containing species content is still lacking.

To acquire a better understanding about the influence of the oxygen and nitrogen-containing species content on the performance of NO removal by HCN and NH₃, the investigation of reaction pathways is of great importance. However, it is extremely difficult or costly to obtain intermediates accurately because of the limitations of current experimental measurement methods. The reactive force field (ReaxFF) molecular dynamics (MD), an advanced computational method, has the potential to overcome this difficulty, which can simulate chemical processes with affordable computational costs (Jiang and Luo, 2021; Wang et al., 2023) and have been widely applied in the research of fuel pyrolysis and combustion (Wang et al., 2021; Bai et al., 2023b, 2023c).

In this study, ReaxFF MD simulations are performed to investigate the effects of oxygen and HCN or NH_3 content on NO reduction performance. The yields of NO and N_2 are studied firstly under varying oxygen and nitrogen-containing species concentrations. Then, the mechanisms of NO removal by HCN and NH_3 are explored, accounting for the NO reduction behaviours under different conditions. Finally, we establish the links between simulations and experimental results, and propose strategies regarding operating conditions to improve NOx reduction efficiency.

2. Methods

2.1. ReaxFF MD

ReaxFF employs a bond-order formalism in conjunction with polarisable charge descriptions to compute the reactive and non-reactive interactions between atoms. In ReaxFF, covalent and electrostatic interactions for a diverse range of materials are considered (Senftle et al., 2016). The potential energy can be calculated by (Ashraf and Van Duin, 2017):

$$E_{\text{system}} = E_{\text{bond}} + E_{\text{over}} + E_{\text{under}} + E_{\text{lp}} + E_{\text{val}} + E_{\text{tor}} + E_{\text{vdWaals}} + E_{\text{Coulomb}}(1)$$

where $E_{\rm system}$, $E_{\rm bond}$, $E_{\rm over}$, $E_{\rm under}$, $E_{\rm lp}$, $E_{\rm val}$, $E_{\rm tor}$, $E_{\rm vdWaals}$, and $E_{\rm Coulomb}$ represent total energy, bond energy, overcoordination energy penalty, undercoordination stability, lone pair energy, valence angle energy, torsion angle energy, van der Waals energy, and Coulomb energy, respectively (Ashraf and Van Duin, 2017).

2.2. Case set-ups

The equivalence ratios of reactants are calculated considering the reduction equation as follows:

$$4\text{NO} + 4\text{HCN} + 3\text{ O}_2 \rightarrow 4\text{ N}_2 + 2\text{ H}_2\text{O} + 4\text{CO}_2(2)$$

$$4NO + 4NH_3 + O_2 \rightarrow 4~N_2 + 6~H_2O(3)$$

To facilitate analysis, a molar ratio, λ , is proposed for HCN and NH₃ as shown in Eq. (4) and Eq. (5), respectively. R is the ratio of the number of HCN or NH₃ molecules to the number of pyridine molecules as shown in Eq. (6).

$$\lambda(\text{HCN}) = \frac{4n(O_2)}{3n(\text{NO})} \tag{4}$$

$$\lambda(\text{NH}_3) = \frac{4n(\text{O}_2)}{n(\text{NO})} \tag{5}$$

$$R = \frac{n(\text{HCN or NH}_3)}{n(\text{NO})}$$
 (6)

where n(NO), $n(O_2)$ and $n(HCN \text{ or } NH_3)$ represent the number of NO, O_2 and HCN or NH_3 , respectively.

The mixtures simulated are summarized in Table 1. Cases 1 and 4 are for comparison under the λ and R values of 1 when NO is removed by HCN and NH₃, respectively. The data of cases 1 and 4 are from our previous work (Bai et al., 2022b). Cases 2 and 3 are set to investigate the effects of O₂ concentrations and HCN/NO ratios on NO abatement performance by HCN, where λ ranges from 0.0 to 0.8 and R ranges from 1.2 to 2.0 with an increment of 0.2. Similarly, Cases 5 and 6 are for the study of the number of O₂ and NH₃ molecules influence on NO reduction behaviours by NH₃ under varying λ and R values. By varying the size of the computational box, all the cases share the same density of 0.15 g/cm³.

2.3. Simulation details

The canonical ensemble (NVT) (Andersen, 1980) is selected for ReaxFF MD simulations with a damping constant of 100 fs. At the beginning, every system undergoes energy minimization and equilibration for 20 ps at 40 K to optimize the initial geometric configuration. After that, the systems are heated to 3000 K and then the temperature is kept constant. The time step is 0.1 fs and total simulation time is 1000 ps for all simulations.

All the simulations are performed with the REAXC package in the LAMMPS software (Large-scale Atomic/Molecular Massively Parallel Simulator) (Aktulga et al., 2012; Plimpton, 1995) with C/H/O/N force field parameters (Zhang et al., 2009a, 2009b). Three replicas are carried out for every case with different initial configurations. The reaction pathways are analysed using Chemical Trajectory Analyzer (Chem-Trayzer) scripts with the bond order cutoff of 0.3 (Dontgen et al., 2015). The net flux (NF) indicates how often the reaction was observed during the simulation time, which is calculated by the occurrence difference between the forward reaction and the reverse reaction (Arvelos and Hori, 2020).

3. Results

3.1. Effects of λ values on NO removal performance by HCN and NH $_3$

Fig. 1a and b show the numbers of NO and N_2 molecules during NO reduction by HCN and NH $_3$ under varying λ values at the end of the reactions, respectively. The number of NO increases with the O $_2$ concentrations, and the upward trend is more significant when NO is removed by HCN than NH $_3$. The N $_2$ formation is inhibited by high O $_2$ concentrations during NO reduction by NH $_3$. However, the N $_2$ generation shows a parabolic trend peaking at $\lambda=0.6$ during NO reduction by HCN. This phenomenon is consistent with experimental studies that the

Table 1
Case set ups.

ID	Number of reactants	λ	R
1	120NO/120HCN/90 O_2	1.0	1.0
2	120NO/120HCN/0-72 O2	0.0-0.8	1.0
3	120NO/144-240HCN/90 O2	1.0	1.2 - 2.0
4	120NO/120NH ₃ /90 O ₂	1.0	1.0
5	$120NO/120NH_3/0-72O_2$	0.0-0.8	1.0
6	$120NO/144-240NH_3/90 O_2$	1.0	1.2-2.0

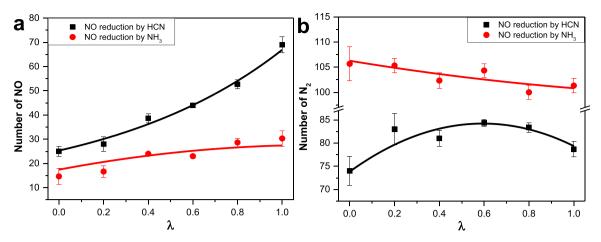


Fig. 1. Numbers of (a) NO and (b) N_2 for λ ranging from 0 to 1 at the end of simulations.

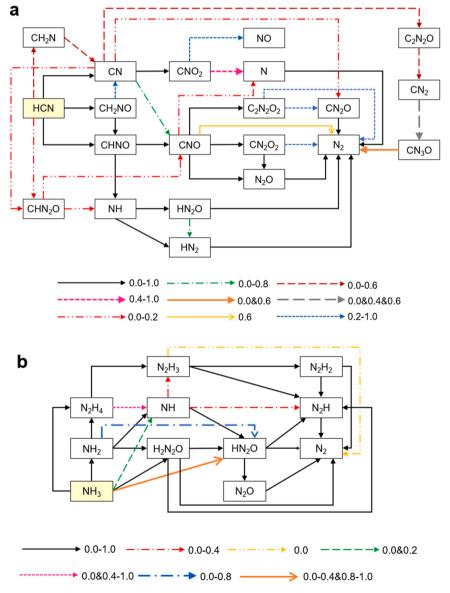


Fig. 2. Reaction pathways of NO reduction by (a) HCN and (b) NH₃ under varying λ values. HCN and NH₃ in the yellow box are the starting molecules.

optimum NOx reduction efficiency by coal pyrolysis gas is reached under fuel rich conditions (Greul et al., 1996).

To acquire a better understanding of how O_2 affects NO reduction by HCN and NH₃, reaction pathways at varying λ values are scrutinized in Fig. 2. According to Fig. 2a, CNO, NH and N are important intermediates for NO consumption in all cases. The reactions of NO consumption by HCN and CN are observed in $\lambda=0.0$ –0.2 cases. The generation of NO and N from intermediate CNO₂ is observed when λ is in the range of 0.2–1.0 and 0.4–1.0, respectively. CN₂ can react with NO forming CN₃O at $\lambda=0.0$, 0.4 and 0.6. As to N₂ molecules, the thermal decomposition of intermediates HN₂O, HN₂, N₂O and CN₂O is found in $\lambda=0.0$ –1.0 cases. The reactions of CNO and N with NO generation occur in $\lambda=0.6$ and 0.0–1.0 cases, respectively. The conversion from CN₃O to N₂ is observed in cases with λ at 0.0 and 0.6. The thermal decomposition of C₂N₂O₂ and CN₂O₂ is found when λ ranges from 0.2 to 1.0.

Fig. 2b illustrates reaction pathways during NO removal by NH₃. It is clear that the main intermediates remain the same in all cases, but the reaction pathways are different at varying O₂ concentrations during NO reduction process. Specifically, NH₃, NH₂ and NH are main intermediates to consume NO molecules and HN₂O, N₂H as well as N₂H₂ are key precursors for N₂ formation when λ values are 0.0–1.0. The pathway N₂H₃ \rightarrow N₂ is observed in the $\lambda=0.0$ case. The pathways from NH₃ to HN₂O and N₂H₂ to NH are not found with λ at 0.6 and 0.2, respectively. The pathways NH \rightarrow N₂H₃, NH \rightarrow N₂H and H₂N₂O \rightarrow N₂H occur when λ values are within 0.0–0.4. The conversion from NH₃ to NH is observed with λ at 0.0 and 0.2.

To further identify how O_2 affects the numbers of NO and N_2 at the end of reactions, the NFs of main elementary reactions linked with N_2 and NO during NO reduction with HCN and NH₃ are investigated in Tables 2 and 3, respectively. As observed in Table 2, the NF of NO consumption fluctuates around 95 with λ rising from 0.0 to 1.0. But the NO formation through pathway $\text{CNO}_2 \rightarrow \text{NO}$ is enhanced at high O_2 concentrates during NO reduction by HCN leading to the net NO consumption decrease with λ increasing, which is consistent with the variation of NO numbers at different λ values in Fig. 2a. Although the influence of O_2 on the NF of NO consumption, the NFs of pathways linked with NO consumption are different at varying λ values. Specifically, the decrease in O_2 concentrations inhibits the pathways CNO \rightarrow CN₂O₂ and CNO \rightarrow N₂O to consume NO, but enhances NO consumption by intermediates HCN, CN and CN₂. The NF of conversion from NH to HN₂O reaches the peak point at $\lambda = 0.4$. The effects of O₂ on N \rightarrow N₂ and

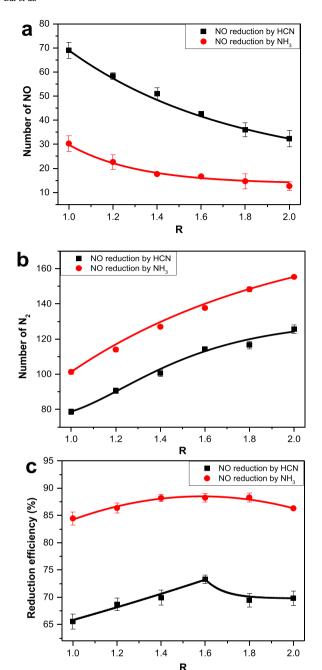
Table 2 Net flux (NF) of main elementary pathways linked with NO and N_2 during NO removal with HCN at $\lambda=0$ –1.

Pathways	0	0.2	0.4	0.6	0.8	1
$HCN \rightarrow CHN_2O$	13	2	0	0	0	0
$CN \rightarrow CHN_2O$	11	7	0	0	0	0
$CN \rightarrow CN_2O$	15	6	0	0	0	0
$CNO \rightarrow N_2$	0	0	0	11	0	0
$CN_2 \rightarrow CN_3O$	7	0	10	10	0	0
$CNO \rightarrow CN_2O_2$	20	22	38	30	48	46
$CNO \rightarrow N_2O$	4	9	15	14	13	18
$N \rightarrow N_2$	5	7	6	6	8	6
$NH \rightarrow HN_2O$	13	20	23	22	22	17
$NH \rightarrow HN_2$	7	7	8	9	5	11
Total NO consumption	95	80	100	102	96	98
$CNO_2 \rightarrow NO$	0	8	14	31	45	60
Net NO consumption	95	72	86	71	51	38
$CNO \rightarrow N_2$	0	0	0	11	0	0
$CN_3O \rightarrow N_2$	10	0	0	7	0	0
$N_2O \rightarrow N_2$	20	48	45	42	45	54
$HN_2O \rightarrow N_2$	18	15	24	26	20	19
$CN_2O \rightarrow N_2$	8	11	11	17	16	19
$C_2N_2O_2 \rightarrow N_2$	0	8	7	13	14	19
$CN_2O_2 \rightarrow N_2$	0	11	5	12	13	17
$N \rightarrow N_2$	5	7	6	6	8	6
$N_2H \rightarrow N_2$	24	32	16	23	17	8
N ₂ generation	85	132	114	157	133	142

Table 3 Net flux (NF) of main elementary pathways linked with NO and N_2 during NO removal with NH $_3$ at $\lambda=0\text{--}1.$

Pathways	0	0.2	0.4	0.6	0.8	1
$NH \rightarrow HN_2O$	33	21	21	32	38	34
$NH \rightarrow N_2H$	7	7	14	0	0	0
$NH_2 \rightarrow H_2N_2O$	89	69	61	44	54	60
$NH_2 \rightarrow HN_2O$	4	12	8	22	14	0
$NH_3 \rightarrow HN_2O$	11	13	10	0	7	7
$NH_3 \rightarrow H_2N_2O$	22	29	22	20	23	18
Total NO consumption	166	151	136	118	136	119
$HN_2O \rightarrow N_2$	53	58	52	49	54	53
$N_2H \rightarrow N_2$	66	76	64	61	69	58
$N_2H_2 \rightarrow N_2$	30	34	28	17	23	18
$N_2O \rightarrow N_2$	23	18	21	19	26	15
$H_2N_2O \rightarrow N_2$	13	5	7	12	2	18
$N_2H_3 \rightarrow N_2$	11	0	0	0	0	0
Total N ₂ formation	196	191	172	158	174	162

 $NH \rightarrow HN_2$ are not significant.


Regarding N_2 formation, the NF of N_2 formation shows a similar trend with the number of N_2 that peaks at $\lambda=0.6$. Among the pathways of N_2 formation, O_2 benefits the pathways $CN_2O \to N_2$, $C_2N_2O_2 \to N_2$ and $CN_2O_2 \to N_2$ with λ ranging from 0.0 to 1.0. The contribution of $N_2O \to N_2$ almost remains the same with λ of 0.2–1.0, but it is significantly inhibited at $\lambda=0.0$. O_2 molecules have insignificant influence on the conversion from N_2H to N_2 over $\lambda=0.0$ –0.6, but suppress this pathway in $\lambda=0.8$ –1.0 cases. The NF of pathway $N\to N_2$ changes slightly with λ increasing. The NF of N_2 formation from HN_2O reaches the highest point at $\lambda=0.6$. Also, the pathways $CNO \to N_2$, $CN_3O \to N_2$ are found in $\lambda=0.6$ and 0.0 & 0.6 cases, respectively.

According to Table 3, the NFs of NO consumption and N_2 formation show a decreasing trend with λ increasing, which agrees well with the variation of NO and N_2 numbers as shown in Fig. 1. Overall, the NF of NO reduction by NH radical almost remains the same with λ ranging from 0.0 to 1.0. When λ is lower than 0.4, the pathway NH \rightarrow HN₂O is inhibited owing to the conversion from NH to N_2 H. The contribution of NH₂ to NO reduction decreases significantly with the increase of O_2 concentrations. The contribution of NH₂ \rightarrow H₂N₂O, opposite to NH₂ \rightarrow HN₂O, shows parabolic trend reaching the lowest point in λ = 0.6. In addition, the reactions between NO and NH₃ molecules are inhibited slightly as the number of O_2 increases. As to N_2 generation, O_2 has little influence on pathways HN₂O \rightarrow N₂, N₂O \rightarrow N₂ and H₂N₂O \rightarrow N₂. At high λ values, the decrease of N_2 generation is through the inhibition of pathways N₂H \rightarrow N₂ and N₂H₂ \rightarrow N₂. Also, the conversion from N₂H₃ to N₂ is found in λ = 0.0.

To sum up, in the NO reduction with HCN cases, O2 shows negative influence on the NO removal owing to the promotion of HCN oxidation forming NO molecules via the pathway HCN \rightarrow CN \rightarrow CNO₂ \rightarrow NO. Although the NF of NO molecules consumption almost remains the same under varying O2 concentrations, the intermediates of NO consumption change from CN, HCN and CN₂ to CNO with λ increasing. O₂ molecules promotes the generation of CNO radical significantly, which can react with NO or itself (CNO) and generate N2 eventually. However, the number of N_2 reaches maximum when λ is 0.6 due to the inhibition on the N_2 formation from HN_2O , N_2H , CN_3O and CNO when λ is greater than 0.6. Besides, the performance of NO removal and N2 formation is supressed by O2 under NO reduction by NH3. That is because the NO consumption by NH3 and NH2 generating H2N2O or HN2O is weakened as O2 concentrations increase, which will be converted into N2 eventually. Moreover, the increase of O₂ decreases the N₂ formation through the weakness of pathway $NH_3/NH_2/NH \rightarrow H_3N_2 \rightarrow H_2N_2 \rightarrow N_2$.

3.2. Effects of R values on NO removal performance by HCN and NH₃

As indicated in Fig. 3, the NO reduction and N₂ formation performance is enhanced by increasing *R* values in both NO reduction by HCN

Fig. 3. The final number of (a) NO, (b) N_2 and (c) reduction efficiency at R = 1.0–2.0. Here, reduction efficiency is the ratio of nitrogen element in N_2 to nitrogen-containing reactants at the end of reactions.

and NH_3 cases. The reduction efficiencies of nitrogen-containing reactants rise by 7.7% and 3.8% with R increasing from 1.0 to 2.0, respectively. However, when R is larger than 1.6, their profiles present downward trends, which agrees well with previous work (Locci et al., 2018).

Fig. 4a illustrates reaction pathways of NO removal by HCN under varying R values. It is clear that high R values promote new intermediates and pathways to N_2 formation. Specifically, when R is larger than 1.2, the pathways $CN \rightarrow C_2N_2O \rightarrow CN_2 \rightarrow CN_3O \rightarrow N_2$, $CN \rightarrow CNO$, $CNO \rightarrow N$ and $HN_2O \rightarrow N_2H$ are observed. The conversion from NH to N_2 and HN_2O to N_2O occur in R=1.6-2.0 cases. The pathways generating N_2 , $CN \rightarrow CHN_2O \rightarrow N_2$ and $CN_2 \rightarrow C_2N_3O \rightarrow N_2$, are found with R of 1.8 and 2.0. The conversion from N to N_2 is not observed in the R=1.6 case. N_2 formation from CNO occurs when R values are 1.2, 1.6 and 1.8.

As shown in Fig. 4b, the main intermediates remain the same with the increase of R values during NO removal by NH $_3$ molecules. However, reactions pathways are different under varying R values. For instance, the pathways NH $_2 \rightarrow \text{HN}_2\text{O}$ and N $_2\text{H}_3 \rightarrow \text{N}_2$ are found when R is larger than 1.2 and 1.8, respectively. The conversion from N $_2\text{H}_4$ to NH occurs in R=1.0-1.8. The NH formation from NH $_3$ and conversion from NH to N $_2\text{H}_3$, N $_2\text{H}_2$ as well as N $_2\text{H}$ are found in R=1.6-2.0. The formation of N $_2$ from H $_2\text{N}_2\text{O}$ is not observed with R of 1.2.

Fig. 4 shows the modification of reaction pathways during NO removal by HCN and NH $_3$ under different R values, but the reason why NO removal performance is enhanced by high R values is still unclear. To resolve this issue, the net flux (NF) of main elementary pathways linked with NO and N $_2$ during NO removal with HCN and NH $_3$ in R=1.0–2.0 is scrutinized.

According to Table 4, the NF of NO abatement increases significantly, but the NO generation from CNO2 decreases slightly with R rising, which accounts for the phenomenon that high R values enhance NO removal performance by HCN. The R values have little influence on the NF of N \rightarrow N₂. The contribution of CNO on NO reduction reaches the peak value in the R = 1.4 case due to the pathways CNO \rightarrow CN₂O₂ and $CNO \rightarrow N_2O$. The pathways of NO consumption by CN, CN_2 and NH are promoted as R increases. More specifically, the NF of NH \rightarrow HN₂O presents an upward trend in R = 1.0-1.6, however, decreases when R is larger than 1.6. The pathways NH \rightarrow N₂H and NH \rightarrow N₂ are enhanced with R of 2.0 and 1.6-2.0, respectively. Regarding N2 generation, high HCN/NO ratios promote the generation of N2 from CHN2O, C2N3O, CN₃O, N₂H and NH. The NFs of CNO \rightarrow N₂, N₂O \rightarrow N₂ and N \rightarrow N₂ fluctuate as R ranges from 1.0 to 2.0. High HCN/NH3 ratios slightly weaken the pathway $CN_2O_2 \rightarrow N_2$. As R increases, the N_2 formation from the pathway CNO \rightarrow C₂N₂O₂/CN₂O \rightarrow N₂ is enhanced in R = 1.0-1.6, but inhibited with R = 1.6-2.0.

When it comes to NO abatement by NH $_3$, the NO consumption with NH $_3$ molecules is enhanced with R increasing mainly through the pathway NH $_3 \rightarrow \text{H}_2\text{N}_2\text{O}$ as observed in Table 5. The conversion from NH to HN $_2\text{O}$ and HN $_2$ almost remains the same under varying R values. Besides, as NH $_3$ /NO ratios increase, the contribution of NH $_2$ to NO abatement (mainly through NH $_2 \rightarrow \text{H}_2\text{N}_2\text{O}$) reduces first and then increases when R is larger than 1.4. As for N $_2$ generation, high R values promote the conversion from N $_2\text{H}_3$, N $_2\text{H}$ and N $_2\text{H}_2$ to N $_2$. NH $_3$ /NO ratios present little influence on the conversion from HN $_2\text{O}$ to N $_2$ with R of 1.0–1.8, but enhance this pathway in the R=2.0 case. The contribution of N $_2\text{O}$ to N $_2$ generation decreases slightly with R rising. In addition, the NF of H $_2\text{N}_2\text{O}$ to N $_2$ decreases with R increasing from 1.0 to 1.2, but presents upward trend when R is larger than 1.2.

In summary, the increase of HCN/NO and NH₃/NO ratios can promote NO removal performance, but the reduction efficiency peaks at the R value of 1.6. Specifically, the enhancement of NO removal is mainly by the promotion of the reactions of NH radical and NO molecules, and forming N2 eventually. In addition, high R values also promote N2 formation by adding new pathways HCN \rightarrow CN \rightarrow CHN₂O \rightarrow N₂ and HCN \rightarrow $CN \rightarrow C_2N_2O \rightarrow CN_2 \rightarrow CN_3O \rightarrow N_2$. Moreover, the "self-consumption" of HCN for N_2 formation through HCN \rightarrow CNO \rightarrow $C_2N_2O_2/CN_2O$ \rightarrow N_2 and $\text{HCN} \to \text{CN} \to \text{C}_2\text{N}_2\text{O} \to \text{CN}_2 \to \text{C}_2\text{N}_3\text{O} \to \text{N}_2$ is enhanced with the rising HCN/NO ratios. Regarding NO abatement with NH3, the increase of NH3 molecules improves the NO reduction performance mainly by promoting the reaction of NO molecules with NH₃ and NH₂ to generate H₂N₂O, which will convert to N2 finally. Also, the "self-consumption" effect of NH₃ is promoted by high R values via the conversion from N₂H₃ and N₂H₂ to N₂, which is produced by the reactions between NH₃, NH₂ and NH.

4. Discussion

ReaxFF MD is regarded as a first-principle simulation approach. The results are accurate and dependable if the chosen force field is sufficiently validated and correct numerical procedures are followed. The

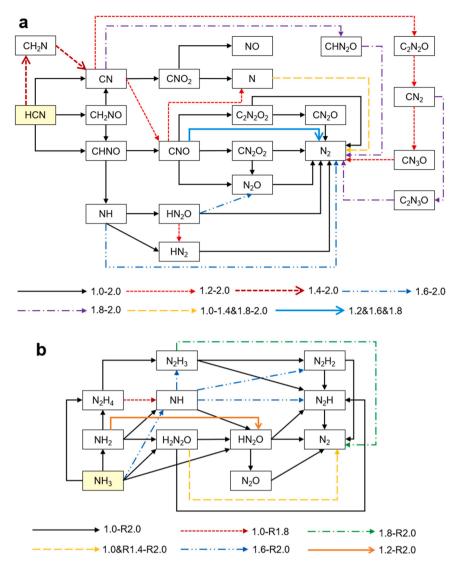


Fig. 4. Reaction pathways of NO reduction by (a) HCN and (b) NH₃ under varying R values. HCN and NH₃ in the yellow box are the starting molecules.

force field C/H/O/N used in the present study has been carefully validated against quantum chemistry calculations and experimental data available (Zhang et al., 2009a, 2009b). The results of the ReaxFF MD simulations thus provide uniquely detailed insights into the relevant chemical kinetics and pathways, which are hard if not impossible to obtain experimentally. On the other hand, simulating combustion at experimental temperatures using the ReaxFF MD method requires excessive computational costs and takes extremely long wall-clock time. It is a common practice for MD to adopt a higher temperature than those in experiments to ensure manageable computation time and cost. Fortunately, this approach has been verified to reproduce reaction mechanisms observed in experiments qualitatively well (Zhang et al., 2009a, 2009b), although there may be some quantitative differences.

In NO removal with HCN, O_2 molecules benefit the forming of important intermediates (CNO and NH), which can react with NO, and produce N_2 finally. However, O_2 also presents negative influence on NO abatement due to the NO formation by the oxidation of HCN, which accounts for the peak yields of N_2 in the $\lambda=0.6$ case.

For the NO reduction by NH $_3$, O $_2$ only shows negative effects on its behaviours. Differing from the NO removal with HCN, species NH $_3$, NH $_2$ and NH can react with NO molecules generating N $_2$ without generating oxygen-containing intermediates firstly. However, O $_2$ molecules can combine with NH $_i$ species forming macromolecules like N $_2$ H $_6$ O $_2$, N $_3$ H $_9$ O $_4$, N $_4$ H $_1$ 2O $_8$, N $_5$ H $_1$ 5O $_8$ and N $_6$ H $_1$ 8O $_8$. This process inhibits the

reactions of $NH_{\rm i}$ and NO molecules, accounting for the negative influence of O_2 on NO reduction.

Considering there are both HCN and NH_3 in coal pyrolysis gas, the optimal λ is around 0.6 depending on the proportion of HCN and NH_3 , which is smaller than the value (around 0.9) in previous experimental work (Greul et al., 1996). That may be caused by the inhibition of nitrogen-free species on the NO removal process under fuel-rich conditions. To obtain a better understanding of the influence of different nitrogen-free species (CH₄, CO and H₂) on NO removal, extended simulations with CH₄, CO and H₂ additives during the NO reduction with HCN and NH_3 are required.

In the NO removal process, the "self-consumption" phenomenon occurs in both HCN and $\rm NH_3$ cases. That means the $\rm N_2$ formation is from HCN and $\rm NH_3$ itself without consuming NO molecules, causing the insufficient reducing agents. In addition, the oxidation of HCN forming NO is observed under the NO reduction with HCN cases, which also leads to the decrease of NO removal performance. Therefore, increasing the ratios of HCN and NH $_3$ over NO can increase the reduction efficiency, which reaches the highest point when R is 1.6 in both HCN and NH $_3$ cases. In real life, the ratios of nitrogen-containing species over NO can be controlled by the adjustment of operating parameters during coal pyrolysis such as temperature (Rüdiger et al., 1997), pressure (Liu and Guo, 2017) and water content (Bai et al., 2022a).

In coal pyrolysis gas, there are other substances like H_2S , COS, which

Table 4 Net flux (NF) of main elementary pathways linked with NO and $\rm N_2$ during NO removal with HCN at R=1.0–2.0.

Pathways	1.0	1.2	1.4	1.6	1.8	2.0
$CN \rightarrow CHN_2O$	0	0	0	0	3	6
$CN_2 \rightarrow CN_3O$	0	10	7	18	14	22
$CNO \rightarrow N_2$	0	14	0	6	5	0
$CNO \rightarrow CN_2O_2$	46	38	60	47	34	45
$CNO \rightarrow N_2O$	18	10	23	13	17	8
$N \rightarrow N_2$	6	10	10	0	8	8
$NH \rightarrow HN_2O$	17	24	40	43	31	35
$NH \rightarrow N_2H$	11	12	8	13	11	17
$NH \rightarrow N_2$	0	0	0	11	5	17
NO consumption	98	118	148	151	128	158
$CNO_2 \rightarrow NO$	60	54	55	49	45	45
Net NO consumption	38	64	93	102	83	113
$CHN_2O \rightarrow N_2$	0	0	0	0	13	8
$C_2N_3O \rightarrow N_2$	0	0	0	0	10	9
$CNO \rightarrow N_2$	0	14	0	6	5	0
$CN_3O \rightarrow N_2$	0	5	6	7	3	13
$N_2O \rightarrow N_2$	54	42	48	36	49	47
$HN_2O \rightarrow N_2$	19	26	32	41	29	36
$CN_2O \rightarrow N_2$	19	28	25	27	27	24
$C_2N_2O_2 \rightarrow N_2$	19	13	17	19	17	17
$CN_2O_2 \rightarrow N_2$	17	11	12	9	8	12
$N \rightarrow N_2$	6	10	10	0	8	8
$N_2H \rightarrow N_2$	8	19	21	28	31	37
$NH \rightarrow N_2$	0	0	0	11	5	17
N ₂ generation	142	168	171	184	205	220

Table 5 Net flux (NF) of main elementary pathways linked with NO and N_2 during NO removal with NH₃ at R=1.0–2.0.

Pathways	1.0	1.2	1.4	1.6	1.8	2.0
$NH_3 \rightarrow HN_2O$	7	10	11	10	4	12
$NH_3 \rightarrow H_2N_2O$	18	27	48	45	34	66
$NH_2 \rightarrow H_2N_2O$	60	44	40	64	75	78
$NH_2 \rightarrow HN_2O$	0	8	12	8	12	2
$NH \rightarrow HN_2O$	34	37	36	30	28	24
$NH \rightarrow HN_2$	0	0	0	4	10	10
NO consumption	119	126	147	161	163	192
$HN_2O \rightarrow N_2$	53	53	53	54	50	66
$N_2H \rightarrow N_2$	58	91	98	137	144	145
$N_2H_2 \rightarrow N_2$	18	29	34	55	58	65
$N_2O \rightarrow N_2$	15	23	13	11	20	6
$H_2N_2O \rightarrow N_2$	18	0	8	6	14	22
$N_2H_3 \rightarrow N_2$	0	0	0	0	14	15
N ₂ generation	162	196	206	263	300	319

may affect the NO reduction process. Besides, developing suitable catalysts for NOx removal by coal pyrolysis gas is also a promising way for NOx control (Ye et al., 2020; Lu et al., 2021a, 2021b). Further investigations are needed to provide quantitative information.

5. Conclusions

In this study, ReaxFF simulations are performed to explore the mechanisms of NO reduction under varying O_2 and nitrogen-containing species (HCN and NH₃) content, respectively. Firstly, we obtained the numbers of NO and N₂ at the end of reactions in NO reduction by HCN and NH₃ under varying conditions. Results indicate that appropriately decreasing O_2 concentrations and increasing the number of nitrogen-containing species can improve the NO reduction performance by coal pyrolysis gas. Such phenomena are explained at the atomic level through the analysis of reaction pathways and NFs of each reaction. To sum up, this research provides new insights into the influence of oxygen and nitrogen-containing species content on NO reduction performance, which can potentially contribute to optimisation of operating conditions to achieve lower NOx emissions during coal combustion.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Support from the UK Engineering and Physical Sciences Research Council under the project "UK Consortium on Mesoscale Engineering Sciences (UKCOMES)" (Grant Nos. EP/R029598/1 and EP/X035875/1) is gratefully acknowledged. This work made use of computational support by CoSeC, the Computational Science Centre for Research Communities, through UKCOMES.

References

Aktulga, H.M., Fogarty, J.C., Pandit, S.A., Grama, A.Y., 2012. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput. 38 (4–5), 245-59.

Andersen, H.C., 1980. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72 (4), 2384-93.

Arvelos, S., Hori, C.E., 2020. ReaxFF study of ethanol oxidation in O₂/N₂ and O₂/CO₂ Environments at high temperatures. J. Chem. Inf. Model. 60 (2), 700-13.

Ashraf, C., Van Duin, A.C., 2017. Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics. The. J. Phys. Chem. A 121 (5). 1051-68

Bai, Z., Jiang, X.Z., Luo, K.H., 2022a. Effects of water on pyridine pyrolysis: a reactive force field molecular dynamics study. Energy 238, 121798.

Bai, Z., Jiang, X.Z., Luo, K.H., 2022b. A reactive molecular dynamics study of NO removal by nitrogen-containing species in coal pyrolysis gas. Proc. Combust. Inst.

Bai, Z., Jiang, X.Z., Luo, K.H., 2023a. Effects of nitrogen-free species on NO removal performance by coal pyrolysis gas via reactive molecular dynamics simulations. J. Energy Inst., 101172

Bai, Z., Jiang, X.Z., Luo, K.H., 2023b. Reactive force field molecular dynamics simulation of pyridine combustion assisted by an electric field. Fuel 333, 126455.

Bai, Z., Jiang, X.Z., Luo, K.H., 2023c. Understanding mechanisms of pyridine oxidation with ozone addition via reactive force field molecular dynamics simulations. Chem. Eng. Sci. 266, 118290.

Bowman C.T. Control of combustion-generated nitrogen oxide emissions: technology driven by regulation. Symposium (International) on Combustion. 1992;24(1): 859–78.

Cao Q., Liu H., Wu S.-H., Zhao L.-P., Huang X. Kinetic study of promoted SNCR process by different gas additives. 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. 2008:4034–8.

Dontgen, M., Przybylski-Freund, M.-D., Kroger, L.C., Kopp, W.A., Ismail, A.E., Leonhard, K., 2015. Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations. J. Chem. Theory Comput. 11 (6), 2517–2524.

Glarborg, P., Jensen, A., Johnsson, J.E., 2003. Fuel nitrogen conversion in solid fuel fired systems. Prog. Energy Combust. Sci. 29 (2), 89–113.

Greul U., Spliethoff H., Magel H.-C., Schnell U., Rüdiger H., Hein K., et al. Impact of temperature and fuel-nitrogen content on fuel-staged combustion with coal pyrolysis gas. Symposium (International) on Combustion. 1996;26(2):2231–9.

Jiang, X.Z., Luo, K.H., 2021. Reactive and electron force field molecular dynamics simulations of electric field assisted ethanol oxidation reactions. Proc. Combust. Inst. 38 (4), 6605-13.

Klippenstein, S.J., Harding, L.B., Glarborg, P., Miller, J.A., 2011. The role of NNH in NO formation and control. Combust. Flame 158 (4), 774-89.

Liu, J., Guo, X., 2017. ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine. Fuel Process. Technol. 161, 107-15.

Locci, C., Vervisch, L., Farcy, B., Domingo, P., Perret, N., 2018. Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: a perspective from numerical modeling. Flow., Turbul. Combust. 100 (2), 301-40.

Lu, P., Ye, L., Yan, X., Fang, P., Chen, X., Chen, D., et al., 2021a. Impact of toluene poisoning on MnCe/HZSM-5 SCR catalyst. Chem. Eng. J. 414, 128838.

Lu, P., Ye, L., Yan, X., Chen, X., Fang, P., Chen, D., et al., 2021b. N2O inhibition by toluene over Mn-Fe spinel SCR catalyst. J. Hazard. Mater. 414, 125468.

Plimpton, S., 1995. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1), 1–19.

Rüdiger, H., Greul, U., Spliethoff, H., Hein, K.R., 1997. Distribution of fuel nitrogen in pyrolysis products used for reburning. Fuel 76 (3), 201–205.

Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., et al., 2016. The ReaxFF reactive force-field: development, applications and future directions. npj Computational. Materials 2 (1), 1–14.

Skalska, K., Miller, J.S., Ledakowicz, S., 2010. Trends in NOx abatement: a review. Sci. Total Environ. 408 (19), 3976–3989.

Wang, J., Jiang, X.Z., Luo, K.H., 2023. Exploring reaction mechanism for ammonia/ methane combustion via reactive molecular dynamics simulations. Fuel 331, 125806.

- Wang, Y., Li, Y., Zhang, C., Yang, L., Fan, X., Chu, L., 2021. A study on co-pyrolysis mechanisms of biomass and polyethylene via ReaxFF molecular dynamic simulation and density functional theory. Process Saf. Environ. Prot. 150, 22–35.
- Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., Cen, K., 2007. Simultaneous removal of NOx, SO₂ and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results. Fuel Process. Technol. 88 (8), 817-23.
- Ye, L., Lu, P., Chen, X., Fang, P., Peng, Y., Li, J., et al., 2020. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Appl. Catal. B: Environ. 277, 119257.
- Zhang, L., Duin, A.Cv, Zybin, S.V., Goddard Iii, W.A., 2009a. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. J. Phys. Chem. B 113 (31), 10770–10778.
- Zhang, L., Zybin, S.V., Van Duin, A.C., Dasgupta, S., Goddard III, W.A., Kober, E.M., 2009b. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. The. J. Phys. Chem. A 113 (40), 10619–10640.