4,754 research outputs found

    Study on Leading Vehicle Detection at Night Based on Multisensor and Image Enhancement Method

    Get PDF
    Low visibility is one of the reasons for rear accident at night. In this paper, we propose a method to detect the leading vehicle based on multisensor to decrease rear accidents at night. Then, we use image enhancement algorithm to improve the human vision. First, by millimeter wave radar to get the world coordinate of the preceding vehicles and establish the transformation of the relationship between the world coordinate and image pixels coordinate, we can convert the world coordinates of the radar target to image coordinate in order to form the region of interesting image. And then, by using the image processing method, we can reduce interference from the outside environment. Depending on D-S evidence theory, we can achieve a general value of reliability to test vehicles of interest. The experimental results show that the method can effectively eliminate the influence of illumination condition at night, accurately detect leading vehicles, and determine their location and accurate positioning. In order to improve nighttime driving, the driver shortage vision, reduce rear-end accident. Enhancing nighttime color image by three algorithms, a comparative study and evaluation by three algorithms are presented. The evaluation demonstrates that results after image enhancement satisfy the human visual habits

    3,3,3′,3′-Tetra­methyl-6,6′-bis­[(pyridin-4-yl)meth­oxy]-1,1′-spiro­biindane ­monohydrate

    Get PDF
    The asymmetric unit in the title compound, C33H34N2O2·H2O, consists of a V-shaped mol­ecule and a water mol­ecule to which it is hydrogen bonded. The angle between the mean planes of the two spiro-connected indane groups is 77.06 (5)°. The two five-membered rings of the indane groups have envelope conformations with the methyl­ene atoms adjacent to the spiro C atom forming the flaps. They have deviations from the mean plane of the other four atoms in the rings of 0.374 (4) and 0.362 (4) Å. In the crystal, molecules are linked to form inversion dimers via O—H⋯N hydrogen bonds involving the pyridine N atoms and the solvent water mol­ecule. The dimers are linked into a chain along the b axis by π–π stacking inter­actions between a pyridine ring and its centrosymmetrically related ring in an adjacent dimer. The centroid–centroid distance between the planes is 3.7756 (17) Å, the perpendicular distance is 3.4478 (11) Å and the offset is 1.539 Å

    1,1,3-Trimethyl-3-phenyl­indane

    Get PDF
    In the title compound, C18H20, the five-membered ring of the indane fragment adopts an envelope conformation, with the flap atom deviating by 0.399 (3) Å from the plane of the remaining four atoms. The dihedral angle between the phenyl ring and the indane benzene ring is 79.58 (7)°

    Physics-informed machine learning for understanding rock moisture dynamics in a sandstone cave

    Get PDF
    Rock moisture, which is a hidden component of the terrestrial hydrological cycle, has received little attention. In this study, frequency domain reflectometry is used to monitor fluctuating rock water content (RWC) in a sandstone cave of the Yungang Grottoes, China. We identified two major cycles of rock moisture addition and depletion, one in summer affected by air vapour concentration and the other in winter caused by freezing-thawing. For the summer-time RWC, by using the long short-term memory (LSTM) network and the SHapley Additive exPlanations (SHAP) method, we find relative humidity, air temperature and wall temperature have contributions to rock moisture, and there is a good match between predicted and measured RWC using the three variables as model inputs. Moreover, by using summer-time vapour concentration and the difference between dew point temperature and wall temperature as input variables of the LSTM network, which belongs to physics-informed machine learning, the predicted RWC has a better agreement with the measured RWC, with increased Nash-Sutcliffe efficiency (NSE) and decreased mean absolute error (MAE) and root mean square error (RMSE). After identifying the causal factors of RWC fluctuations, we also identified the mechanism controlling the inter-day fluctuations of vapour condensation. The increased vapour concentration accompanying a precipitation event leads to transport of water vapour into rock pores, which is subsequently adsorbed onto the surface of rock pores and then condensed into liquid water. With the aid of the physics-informed deep learning model, this study increases understanding of sources of water in caves, which would contribute to future strategies of alleviating weathering in caves.</p

    Amplification of light pulses with orbital angular momentum (OAM) in nitrogen ions lasing

    Full text link
    Nitrogen ions pumped by intense femtosecond laser pulses give rise to optical amplification in the ultraviolet range. Here, we demonstrated that a seed light pulse carrying orbital angular momentum (OAM) can be significantly amplified in nitrogen plasma excited by a Gaussian femtosecond laser pulse. With the topological charge of +1 and -1, we observed an energy amplification of the seed light pulse by two orders of magnitude, while the amplified pulse carries the same OAM as the incident seed pulse. Moreover, we show that a spatial misalignment of the plasma amplifier with the OAM seed beam leads to an amplified emission of Gaussian mode without OAM, due to the special spatial profile of the OAM seed pulse that presents a donut-shaped intensity distribution. Utilizing this misalignment, we can implement an optical switch that toggles the output signal between Gaussian mode and OAM mode. This work not only certifies the phase transfer from the seed light to the amplified signal, but also highlights the important role of spatial overlap of the donut-shaped seed beam with the gain region of the nitrogen plasma for the achievement of OAM beam amplification.Comment: 10 pages, 7 figure

    Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population

    Get PDF
    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation

    Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering

    Get PDF
    All quiet on the nitrogen front. The dissociation of stable diatomic nitrogen molecules (N-2) is one of the most challenging tasks in the scientific community and currently requires both high pressure and high temperature. Here, we demonstrate that N-2 can be dissociated under mild conditions by cyclic strain engineering. The method can be performed at a critical reaction pressure of less than 1 bar, and the temperature of the reaction container is only 40 degrees C. When graphite was used as a dissociated N* receptor, the normalized loading of N to C reached as high as 16.3 at/at %. Such efficient nitrogen dissociation is induced by the cyclic loading and unloading mechanical strain, which has the effect of altering the binding energy of N, facilitating adsorption in the strain-free stage and desorption in the compressive strain stage. Our finding may lead to opportunities for the direct synthesis of N-containing compounds from N-2

    Optical heterodyne micro-vibration detection based on all-fiber acousto-optic superlattice modulation

    Get PDF
    We propose a configuration of optical heterodyne micro-vibration detection based on an all-fiber acousto-optic superlattic modulation structure that acts as both frequency shifter and reflector, simultaneously. The vibration information within the frequency range between 1 Hz to 150 kHz of a piezoelectric mirror (PZM) has been experimentally measured by using this all-fiber optical heterodyne detection configuration. The minimal measurable vibration amplitude and the resolution are around 0.013 nm and 10 pm in the region of tens to hundreds of kilohertz, respectively. The configuration not only has advantages of compact size, easy alignment and non-contact measurement, but also gains high accuracy, which provides a promising alternative and could be applied in the compact and portable instruments based on optical heterodyne detection
    corecore