467 research outputs found
Integrated fault estimation and accommodation design for discrete-time Takagi-Sugeno fuzzy systems with actuator faults
This paper addresses the problem of integrated robust
fault estimation (FE) and accommodation for discrete-time
Takagi–Sugeno (T–S) fuzzy systems. First, a multiconstrained
reduced-order FE observer (RFEO) is proposed to achieve FE for
discrete-time T–S fuzzy models with actuator faults. Based on the
RFEO, a new fault estimator is constructed. Then, using the information
of online FE, a new approach for fault accommodation
based on fuzzy-dynamic output feedback is designed to compensate
for the effect of faults by stabilizing the closed-loop systems. Moreover,
the RFEO and the dynamic output feedback fault-tolerant
controller are designed separately, such that their design parameters
can be calculated readily. Simulation results are presented to
illustrate our contributions
Adaptive Fault-Tolerant Formation Control for Quadrotors with Actuator Faults
In this paper, we investigate the fault-tolerant formation control of a group of quadrotor aircrafts with a leader. Continuous fault-tolerant formation control protocol is constructed by using adaptive updating mechanism and boundary layer theory to compensate actuator fault. Results show that the desired formation pattern and trajectory under actuator fault can be achieved using the proposed fault-tolerant formation control. A simulation is conducted to illustrate the effectiveness of the method
Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury.
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays important roles in regulating immune and metabolic homeostasis. Activation of the mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) transcription factors are crucial for the regulation of immune cell function. Here, we investigated the mechanism by which the ATF3/mTOR/HIF-1 axis regulates immune responses in a liver ischemia/reperfusion injury (IRI) model. Deletion of ATF3 exacerbated liver damage, as evidenced by increased levels of serum ALT, intrahepatic macrophage/neutrophil trafficking, hepatocellular apoptosis, and the upregulation of pro-inflammatory mediators. ATF3 deficiency promoted mTOR and p70S6K phosphorylation, activated high mobility group box 1 (HMGB1) and TLR4, inhibited prolyl-hydroxylase 1 (PHD1), and increased HIF-1α activity, leading to Foxp3 downregulation and RORγt and IL-17A upregulation in IRI livers. Blocking mTOR or p70S6K in ATF3 knockout (KO) mice or bone marrow-derived macrophages (BMMs) downregulated HMGB1, TLR4, and HIF-1α and upregulated PHD1, increasing Foxp3 and decreasing IL-17A levels in vitro. Silencing of HIF-1α in ATF3 KO mice ameliorated IRI-induced liver damage in parallel with the downregulation of IL-17A in ATF3-deficient mice. These findings demonstrated that ATF3 deficiency activated mTOR/p70S6K/HIF-1α signaling, which was crucial for the modulation of TLR4-driven inflammatory responses and T cell development. The present study provides potential therapeutic targets for the treatment of liver IRI followed by liver transplantation
Hierarchical-Structure-Based Fault Estimation and Fault-Tolerant Control for Multiagent Systems
This paper proposes a hierarchical-structure-based fault estimation and fault-tolerant control design with bidirectional interactions for nonlinear multiagent systems with actuator faults. The hierarchical structure consists of distributed multiagent system hierarchy, undirected topology hierarchy, decentralized fault estimation hierarchy, and distributed fault-tolerant control hierarchy. The states and faults of the system are estimated simultaneously by merging the unknown input observer in a decentralized fashion. The distributed-constant-gain-based and node-based fault-tolerant control schemes are developed to guarantee the asymptotic stability and H-infinity performance of multiagent systems, respectively, based on the estimated information in the fault estimation hierarchy and the relative output information from neighbors. Two simulation cases validate the efficiency of the proposed hierarchical structure control algorithm
Integrated Fault-Tolerant Control for Close Formation Flight
This paper investigates the position-tracking and attitude-tracking control problem of close formation flight with vortex effects under simultaneous actuator and sensor faults. On the basis of the estimated state and fault information from unknown input observers and relative output information from neighbors, an integration of decentralized fault estimation and distributed fault-tolerant control is developed to deal with bidirectional interactions and to guarantee the asymptotic stability and H_\infty performance of close formations
Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies
This paper proposes a novel distributed fault-tolerant consensus tracking control design for multi-agent systems with abrupt and incipient actuator faults under fixed and switching topologies. The fault and state information of each individual agent is estimated by merging unknown input observer in the decentralized fault estimation hierarchy. Then, two kinds of distributed fault-tolerant consensus tracking control schemes with average dwelling time technique are developed to guarantee the mean-square exponential consensus convergence of multi-agent systems, respectively, on the basis of the relative neighboring output information as well as the estimated information in fault estimation. Simulation results demonstrate the effectiveness of the proposed fault-tolerant consensus tracking control algorithm
Decentralized Output Sliding-Mode Fault-Tolerant Control for Heterogeneous Multiagent Systems
This paper proposes a novel decentralized output sliding-mode fault-tolerant control (FTC) design for heterogeneous multiagent systems (MASs) with matched disturbances, unmatched nonlinear interactions, and actuator faults. The respective iteration and iteration-free algorithms in the sliding-mode FTC scheme are designed with adaptive upper bounding laws to automatically compensate the matched and unmatched components. Then, a continuous fault-tolerant protocol in the observer-based integral sliding-mode design is developed to guarantee the asymptotic stability of MASs and the ultimate boundedness of the estimation errors. Simulation results validate the efficiency of the proposed FTC algorithm
Fault Diagnosis for Linear Discrete Systems Based on an Adaptive Observer
This paper presents a fault diagnosis algorithm to estimate the fault for a class of linear discrete systems based on an adaptive fault estimation observer. And observer gain matrix and adaptive adjusting rule of the fault estimator are designed. Furthermore, the adaptive regulating algorithm can guarantee the first-order difference of a Lyapunov discrete function to be negative, so that the observer is ensured to be stable and fault estimation errors are convergent. Finally, simulation results of an aircraft F-16 illustrate the advantages of the theoretic results that are obtained in this paper
Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems
A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation
- …