69 research outputs found
Aspisol inhibits tumor growth and induces apoptosis in breast cancer
Nonsteroidal anti-inflammatory drugs inhibit cell proliferation and induce apoptosis in various cancer cell lines, which is considered to be an important mechanism for their anti-tumor activity and cancer prevention. However, the molecular mechanisms through which these compounds induce apoptosis are not well understood. Aim: to determine the effects of nonselective cyclooxygenase-2 (COX-2) inhibitor, aspisol on breast cancer cells in vitro and in vivo. Methods: The cytotoxic activity of aspisol was evaluated by MTT assay. The apoptosis index of cells was measured by flow cytometry. Immunohistochemical staining was used to detect expressions of COX-2 and caspase-3 in MDA-MB-231 cells. The expression of bcl-2 and bax was analyzed by Western blot analysis. The content of prostaglandin E2 (PGE2) in MDA-MB-231 cells was estimated by ELISA. In vivo apoptosis of the tumor cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Results: Our results showed that aspisol reduced viability of MDA-MB-231 cells in time- and dose- dependent fashions and induced apoptosis by increase of caspase-3 and bax expressions while decrease of COX-2 and bcl-2 expression in vitro. In addition, exposure to aspisol decreased the basal release of PGE2. In vivo, aspisol also inhibited the proliferation of breast cancer cells and induced their apoptosis. Conclusions: Our in vitro and in vivo data indicated that the antitumor effects of aspisol on breast cancer cells was probably mediated by the induction of apoptosis, and it could be linked to the downregulation of the COX-2 or bcl-2 expression and up-regulation of caspase-3 or bax expression.ΠΠ΅ΡΡΠ΅ΡΠΎΠΈΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΡΡ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ Π²ΡΠ·ΡΠ²Π°ΡΡ Π°ΠΏΠΎΠΏΡΠΎΠ· Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΡΡ
, ΡΡΠΎ ΡΡΠΈΡΠ°Π΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΠΈΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ
ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ°ΠΊΠ°. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ Π°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΡΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΈΠ·ΡΡΠ΅Π½Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ.
Π¦Π΅Π»Ρ: ΠΈΠ·ΡΡΠΈΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΡΠΈΠΊΠ»ΠΎΠ³Π΅ΠΊΡΠΈΠ½Π°Π·Ρ-2 (COX-2) β Π°ΡΠΏΠΈΠ·ΠΎΠ»Π° β Π½Π° Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ
ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ in vitro ΠΈ in vivo. ΠΠ΅ΡΠΎΠ΄Ρ: Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ MDA-MB-231 ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ MTT-ΡΠ΅ΡΡΠ°.
ΠΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½Π΄Π΅ΠΊΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΠΊΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ
ΠΏΡΠΎΡΠΈΠ² COX-2 ΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-3. ΠΠΊΡΠΏΡΠ΅ΡΡΠΈΡ bcl-2 ΠΈ bax ΠΈΠ·ΡΡΠ°Π»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΠ΅ΡΡΠ΅ΡΠ½-Π±Π»ΠΎΡ-Π°Π½Π°Π»ΠΈΠ·Π°. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΠ°Π³Π»Π°Π½Π΄ΠΈΠ½Π°
E2
(PGE2
) Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
MDA-MB-231 ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ELISA. In vivo Π°ΠΏΠΎΠΏΡΠΎΠ· ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ
ΠΏΡΡΠ΅ΠΌ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ°Π·ΡΡΠ²ΠΎΠ² ΠΠΠ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠΉ Π΄Π΅Π·ΠΎΠΊΡΠΈΠ½ΡΠΊΠ»Π΅ΠΎΡ-ΠΈΠ΄ΠΈΠ»ΡΡΠ°Π½ΡΠ΅ΡΠ°Π·Ρ (ΠΌΠ΅ΡΠΎΠ΄ TUNEL). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ:
ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ½ΠΊΡΠ±Π°ΡΠΈΠΈ ΠΈ Π΄ΠΎΠ·Ρ Π°ΡΠΏΠΈΠ·ΠΎΠ» ΡΠ³Π½Π΅ΡΠ°Π» ΡΠΎΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ MDA-MB-231 in vitro ΠΈ Π²ΡΠ·ΡΠ²Π°Π»
ΠΈΡ
Π°ΠΏΠΎΠΏΡΠΎΠ· Π½Π° ΡΠΎΠ½Π΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-3 ΠΈ bax, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ COX-2 ΠΈ bcl-2. Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ
in vivo Π°ΡΠΏΠΈΠ·ΠΎΠ» ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π» ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΈ Π²ΡΠ·ΡΠ²Π°Π» ΠΈΡ
Π°ΠΏΠΎΠΏΡΠΎΠ·.
ΠΡΠ²ΠΎΠ΄Ρ: Π΄Π°Π½Π½ΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ in vitro ΠΈ in vivo, ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΌ ΡΡΡΠ΅ΠΊΡΠ΅ Π°ΡΠΏΠΈΠ·ΠΎΠ»Π° Π½Π° ΠΊΠ»Π΅ΡΠΊΠΈ ΡΠ°ΠΊΠ°
ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ, ΡΡΠΎ ΡΠΊΠΎΡΠ΅Π΅ Π²ΡΠ΅Π³ΠΎ ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°Π½ΠΎ Π΅Π³ΠΎ ΠΏΡΠΎΠ°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ²ΡΠ·Π°Π½ΠΎ ΡΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ
ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ COX-2 ΠΈ bcl-2, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-3 ΠΈ bax
High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells
Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to 60Co-γ-rays. NIH 3T3 cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with 60Co-γ-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 Β± 6.51 vs 66.0 Β± 3.51 and 67.7 Β± 7.37; transfection: 121.7 Β± 6.50 vs 65.3 Β± 3.51 and 69.0 Β± 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, c-myc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes
Fabrication of vertical-structured GaN-based light-emitting diodes using auto-split laser lift-off technique
Vertical-structured GaN-based light-emitting diodes (V-LEDs) were successfully fabricated using auto-split laser lift-off (LLO) technique. Compared to regular sapphire-substrate LED, the forward voltage of the V-LED at 20 mA is about 5% lower, while the light output power is about 43% higher. For V-LED, the saturation behavior of the light output power (Lop) is not observed when the injection current is increased to 480 mA, while the Lop of regular LED starts to decrease at around 110 mA. These improved results can be attributed to the total effect of less current crowding, surface roughening on n-GaN layer, highly reflective Ag mirror and good thermal conductivity of the electroplated Ni. Finally, mechanisms of the auto-split LLO technique are discussed based on one-dimensional heat equation. It is shown that the auto-split LLO process is determined by the vapor pressure of N2 gas, which is strongly dependent on the density of the laser energy. ζΌ 2012 The Electrochemical Society. All rights reserved
- β¦