57,947 research outputs found
Varieties with vanishing holomorphic Euler characteristic
International audienceAbstract. We study smooth complex projective varietie
The evolution-dominated hydrodynamic model and the pseudorapidity distributions in high energy physics
By taking into account the effects of leading particles, we discuss the
pseudorapidity distributions of the charged particles produced in high energy
heavy ion collisions in the context of evolution-dominated hydrodynamic model.
The leading particles are supposed to have a Gaussian rapidity distribution
normalized to the number of participants. A comparison is made between the
theoretical results and the experimental measurements performed by BRAHMS and
PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions at sqrt(s_NN)
=200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at
sqrt(s_NN) =2.76 TeV.Comment: 17 pages,4 figures, 2 table
Thermal rectification in asymmetric U-shaped graphene flakes
In this paper, we study the thermal rectification in asymmetric U-shaped
graphene flakes by using nonequilibrium molecular dynamics simulations. The
graphene flakes are composed by a beam and two arms. It is found that the heat
flux runs preferentially from the wide arm to the narrow arm which indicates a
strong rectification effect. The dependence of the rectification ratio upon the
heat flux, the length and the width of the beam, the length and width of the
two arms are studied. The result suggests a possible route to manage heat
dissipation in U-shaped graphene based nanoelectronic devices.Comment: 3 pages, 4 figure
Possible TeV Source Candidates In The Unidentified EGRET Sources
We study the -ray emission from the pulsar magnetosphere based on
outer gap models, and the TeV radiation from pulsar wind nebulae (PWNe) through
inverse Compton scattering using a one-zone model. We showed previously that
GeV radiation from the magnetosphere of mature pulsars with ages of years old can contribute to the high latitude unidentified EGRET
sources. We carry out Monte Carlo simulations of -ray pulsars in the
Galaxy and the Gould Belt, assuming the pulsar birth rate, initial position,
proper motion velocity, period, and magnetic field distribution and evolution
based on observational statistics. We select from the simulation a sample of
mature pulsars in the Galactic plane () and in the high
latitude () which could be detected by EGRET. The TeV flux from
the pulsar wind nebulae of our simulated sample through the inverse Compton
scattering by relativistic electrons on the microwave cosmic background and
synchrotron seed photons are calculated. The predicted fluxes are consistent
with the present observational constraints. We suggest that strong EGRET
sources can be potential TeV source candidates for present and future
ground-based TeV telescopes.Comment: Minor changes, MNRAS in pres
From the Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings
We consider the -d quantum link model on the honeycomb lattice
and show that it is equivalent to a quantum dimer model on the Kagom\'e
lattice. The model has crystalline confined phases with spontaneously broken
translation invariance associated with pinwheel order, which is investigated
with either a Metropolis or an efficient cluster algorithm. External
half-integer non-Abelian charges (which transform non-trivially under the
center of the gauge group) are confined to each other
by fractionalized strings with a delocalized flux. The strands
of the fractionalized flux strings are domain walls that separate distinct
pinwheel phases. A second-order phase transition in the 3-d Ising universality
class separates two confining phases; one with correlated pinwheel
orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one
short paragraph are adde
- …