68,444 research outputs found
A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes
A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion. Here, a nanofluidic ion diode was realized by modifying carbon nitride nanotubes with different molecules yielding an asymmetric surface charge that allows for ion rectification. With the advantages of low-cost, thermal and mechanical robustness, and simple fabrication process, carbon nitride nanotubes with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems
Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138
We investigate a phase-reference VLBI observation that was conducted at 15.4
GHz by fast switching VLBA antennas between the compact steep-spectrum radio
source 3C 138 and the quasar PKS 0528+134 which are about 4 away on the
sky. By comparing the phase-reference mapping with the conventional hybrid
mapping, we demonstrate the feasibility of high precision astrometric
measurements for sources separated by 4. VLBI phase-reference mapping
preserves the relative phase information, and thus provides an accurate
relative position between 3C 138 and PKS 0528+134 of
and
(J2000.0) in right ascension and declination, respectively. This gives an
improved position of the nucleus (component A) of 3C 138 in J2000.0 to be
RA= and Dec= under the
assumption that the position of calibrator PKS 0528+134 is correct. We further
made a hybrid map by performing several iterations of CLEAN and
self-calibration on the phase-referenced data with the phase-reference map as
an input model for the first phase self-calibration. Compared with the hybrid
map from the limited visibility data directly obtained from fringe fitting 3C
138 data, this map has a similar dynamic range, but a higher angular
resolution. Therefore, phase-reference technique is not only a means of phase
connection, but also a means of increasing phase coherence time allowing
self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6
Ranking Spaces for Predicting Human Movement in an Urban Environment
A city can be topologically represented as a connectivity graph, consisting
of nodes representing individual spaces and links if the corresponding spaces
are intersected. It turns out in the space syntax literature that some defined
topological metrics can capture human movement rates in individual spaces. In
other words, the topological metrics are significantly correlated to human
movement rates, and individual spaces can be ranked by the metrics for
predicting human movement. However, this correlation has never been well
justified. In this paper, we study the same issue by applying the weighted
PageRank algorithm to the connectivity graph or space-space topology for
ranking the individual spaces, and find surprisingly that (1) the PageRank
scores are better correlated to human movement rates than the space syntax
metrics, and (2) the underlying space-space topology demonstrates small world
and scale free properties. The findings provide a novel justification as to why
space syntax, or topological analysis in general, can be used to predict human
movement. We further conjecture that this kind of analysis is no more than
predicting a drunkard's walking on a small world and scale free network.
Keywords: Space syntax, topological analysis of networks, small world, scale
free, human movement, and PageRankComment: 11 pages, 5 figures, and 2 tables, English corrections from version 1
to version 2, major changes in the section of introduction from version 2 to
The Nature of Quantum Hall States near the Charge Neutral Dirac Point in Graphene
We investigate the quantum Hall (QH) states near the charge neutral Dirac
point of a high mobility graphene sample in high magnetic fields. We find that
the QH states at filling factors depend only on the perpendicular
component of the field with respect to the graphene plane, indicating them to
be not spin-related. A non-linear magnetic field dependence of the activation
energy gap at filling factor suggests a many-body origin. We therefore
propose that the and states arise from the lifting of the spin
and sub-lattice degeneracy of the LL, respectively.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Moving boundary approximation for curved streamer ionization fronts: Solvability analysis
The minimal density model for negative streamer ionization fronts is
investigated. An earlier moving boundary approximation for this model consisted
of a "kinetic undercooling" type boundary condition in a Laplacian growth
problem of Hele-Shaw type. Here we derive a curvature correction to the moving
boundary approximation that resembles surface tension. The calculation is based
on solvability analysis with unconventional features, namely, there are three
relevant zero modes of the adjoint operator, one of them diverging;
furthermore, the inner/outer matching ahead of the front has to be performed on
a line rather than on an extended region; and the whole calculation can be
performed analytically. The analysis reveals a relation between the fields
ahead and behind a slowly evolving curved front, the curvature and the
generated conductivity. This relation forces us to give up the ideal
conductivity approximation, and we suggest to replace it by a constant
conductivity approximation. This implies that the electric potential in the
streamer interior is no longer constant but solves a Laplace equation; this
leads to a Muskat-type problem.Comment: 22 pages, 6 figure
Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies
The recent discovery of hindrance in heavy-ion induced fusion reactions at
extreme sub-barrier energies represents a challenge for theoretical models.
Previously, it has been shown that in medium-heavy systems, the onset of fusion
hindrance depends strongly on the "stiffness" of the nuclei in the entrance
channel. In this work, we explore its dependence on the total mass and the
-value of the fusing systems and find that the fusion hindrance depends in a
systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure
Characterizing Short Necklace States in Logarithmic Transmission Spectrum of Strongly Localized Systems
High transmission plateaus exist widely in the logarithmic transmission
spectra of localized systems. Their physical origins are short chains of
coupled-localized-states embedded inside the localized system, which are dubbed
as "short necklace states". In this work, we define the essential quantities
and then, based on these quantities, we investigate the short necklace states'
properties statistically and quantitatively. Two different approaches are
utilized and the results from them agree with each other very well. In the
first approach, the typical plateau-width and the typical order of short
necklace states are obtained from the correlation function of logarithmic
transmission. In the second approach, we investigate statistical distributions
of the peak/plateau-width measured in logarithmic transmission spectra. A novel
distribution is found, which can be exactly fitted by the summation of two
Gaussian distributions. These two distributions are the results of sharp peaks
of localized states and the high plateaus of short necklace states. The center
of the second distribution also tells us the typical plateau-width of short
necklace states. With increasing the system length, the scaling property of
typical plateau-width is very special since it almost does not decrease. The
methods and the quantities defined in this work can be widely used on Anderson
localization studies.Comment: 6 pages, 4 figure
- …