1,050 research outputs found

    Spontaneous Symmetry Breaking and Linear Electrooptic Response in the Achiral Ferronematic Compound

    Get PDF
    A compound with the constituent non-chiral molecules, DIO, known to exhibit three nematic subphases namely N, Nx and NF, is studied by polarizing microscopy as function of the alignment layers on one of the substrates, no alignment on any of the substrates, alignment layer on both substrates with parallel and antiparallel rubbing, different cell spacings. The cell with one alignment layer is also studied by electro-optics. N is found to be a conventional nematic phase, but it shows two additional unusual features: chiral domains of opposite chirality and the linear EO response to the applied signal under certain experimental conditions. The emergence of chiral domains is explained by a segregation of the stable helical conformers of the opposite chirality, these preferring to form chiral domains, each with optical rotation power of ± 4o/μm. This is the first example of helical segregation observed in non-chiral molecules in the high temperature nematic phase. The conformers are suggested to arise from the rotations of the aromatic rings either left-handed or right-handed. Unlike the ordinary nematic liquid crystalline phase, linear electrooptical response to the applied electric field (i.e. to its fundamental frequency) is observed, this confirms the polar nature of this phase. The NF is the ferroelectric nematic as reported previously. The strong polar azimuthal surface interaction energy in NF phase stabilizes a homogeneous structure in planar aligned LC cells rubbed parallel and in cell rubbed antiparallel, it gives a twisted structure. The transmission spectra simulated using Berreman’s 4 x 4 matrix method for different cell conditions and for different angles between the Polarizer and the Analyzer quantitatively confirm the twisted structures in antiparallel rubbed cells that agree with experimental observations. The twist angle of 170o is found between the directors from the top to the bottom in antiparallel rubbed cells as opposed to 180o observed previously

    Two mechanisms for formation of ferronematic phase studied by dielectric spectroscopy

    Get PDF
    A non-chiral ferroelectric nematic compound DIO was studied by dielectric spectroscopy in the frequency range 0.01 Hz to 10 MHz over a wide range of temperatures. The compound exhibits three nematic phases on cooling from the isotropic phase, viz. the ordinary paraelectric nematic N; intermediate nematic NX and ferroelectric NF phases. The lower frequency relaxation process P1 is similar to those observed in other ferronematic compounds. It is a continuation of the molecular flip-flop mode in the isotropic phase and corresponds to the collective movement of dipoles which are strongly coupled with splay fluctuations in the nematic phases. In addition to this process, the studied compound DIO shows another collective relaxation process in both paraelectric nematic phases. The high-frequency P2 originates from the polar/chiral domains which appear due to spontaneous symmetry breaking in achiral system. Both the collective processes, P1 and P2, show soft mode-like behavior on cooling to the NX-NF phase transition and therefore independently contribute to the formation of ferronematic phase

    Hamiltonian Theory of the Composite Fermion Wigner Crystal

    Full text link
    Experimental results indicating the existence of the high magnetic field Wigner Crystal have been available for a number of years. While variational wavefunctions have demonstrated the instability of the Laughlin liquid to a Wigner Crystal at sufficiently small filling, calculations of the excitation gaps have been hampered by the strong correlations. Recently a new Hamiltonian formulation of the fractional quantum Hall problem has been developed. In this work we extend the Hamiltonian approach to include states of nonuniform density, and use it to compute the excitation gaps of the Wigner Crystal states. We find that the Wigner Crystal states near ν=1/5\nu=1/5 are quantitatively well described as crystals of Composite Fermions with four vortices attached. Predictions for gaps and the shear modulus of the crystal are presented, and found to be in reasonable agreement with experiments.Comment: 41 page, 6 figures, 3 table

    Competition between quantum-liquid and electron-solid phases in intermediate Landau levels

    Full text link
    On the basis of energy calculations we investigate the competition between quantum-liquid and electron-solid phases in the Landau levels n=1,2, and 3 as a function of their partial filling factor. Whereas the quantum-liquid phases are stable only in the vicinity of quantized values 1/(2s+1) of the partial filling factor, an electron solid in the form of a triangular lattice of clusters with a few number of electrons (bubble phase) is energetically favorable between these fillings. This alternation of electron-solid phases, which are insulating because they are pinned by the residual impurities in the sample, and quantum liquids displaying the fractional quantum Hall effect explains a recently observed reentrance of the integral quantum Hall effect in the Landau levels n=1 and 2. Around half-filling of the last Landau level, a uni-directional charge density wave (stripe phase) has a lower energy than the bubble phase.Comment: 12 pages, 9 figures; calculation of exact exchange potential for n=1,2,3 included, energies of electron-solid phases now calculated with the help of the exact potential, and discussion of approximation include

    Improving the Segmentation Stage of a Pedestrian Tracking Video-based System by means of Evolution Strategies

    Get PDF
    12 pages, 7 figures.-- Contributed to: Eighth European Workshop on Evolutionary Computation in Image Analysis and Signal Processing (EvoIASP 2006, Budapest, Hungary, Apr 10-12, 2006).Pedestrian tracking video-based systems present particular problems such as the multi fragmentation or low level of compactness of the resultant blobs due to the human shape or movements. This paper shows how to improve the segmentation stage of a video surveillance system by adding morphological post-processing operations so that the subsequent blocks increase their performance. The adjustment of the parameters that regulate the new morphological processes is tuned by means of Evolution Strategies. Finally, the paper proposes a group of metrics to assess the global performance of the surveillance system. After the evaluation over a high number of video sequences, the results show that the shape of the tracks match up more accurately with the parts of interests. Thus, the improvement of segmentation stage facilitates the subsequent stages so that global performance of the surveillance system increases.Funded by CICYT (TIC2002-04491-C02-02)Publicad

    Persistent spin splitting of a two-dimensional electron gas in tilted magnetic fields

    Full text link
    By varying the orientation of the applied magnetic field with respect to the normal of a two-dimensional electron gas, the chemical potential and the specific heat reveal persistent spin splitting in all field ranges. The corresponding shape of the thermodynamic quantities distinguishes whether the Rashba spin-orbit interaction RSOI, the Zeeman term or both dominate the splitting. The interplay of the tilting of the magnetic field and RSOI resulted to an amplified splitting in weak fields. The effects of changing the RSOI strength and the Landau level broadening are also investigated.Comment: 10 pages, 5 figure

    Center or Limit Cycle: Renormalization Group as a Probe

    Full text link
    Based on our studies done on two-dimensional autonomous systems, forced non-autonomous systems and time-delayed systems, we propose a unified methodology - that uses renormalization group theory - for finding out existence of periodic solutions in a plethora of nonlinear dynamical systems appearing across disciplines. The technique will be shown to have a non-trivial ability of classifying the solutions into limit cycles and periodic orbits surrounding a center. Moreover, the methodology has a definite advantage over linear stability analysis in analyzing centers

    A 3D Human Posture Approach for Activity Recognition Based on Depth Camera

    Get PDF
    Human activity recognition plays an important role in the context of Ambient Assisted Living (AAL), providing useful tools to improve people quality of life. This work presents an activity recognition algorithm based on the extraction of skeleton joints from a depth camera. The system describes an activity using a set of few and basic postures extracted by means of the X-means clustering algorithm. A multi-class Support Vector Machine, trained with the Sequential Minimal Optimization is employed to perform the classification. The system is evaluated on two public datasets for activity recognition which have different skeleton models, the CAD-60 with 15 joints and the TST with 25 joints. The proposed approach achieves precision/recall performances of 99.8 % on CAD-60 and 97.2 %/91.7 % on TST. The results are promising for an applied use in the context of AAL

    Identifying cancer-related microRNAs based on gene expression data

    Get PDF
    Motivation: MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in post-transcriptional regulations as well as other important biological processes. Recently, accumulating evidences indicate that miRNAs are extensively involved in cancer. However, it is a big challenge to identify which miRNAs are related to which cancer considering the complex processes involved in tumors, where one miRNA may target hundreds or even thousands of genes and one gene may regulate multiple miRNAs. Despite integrative analysis of matched gene and miRNA expression data can help identify cancer-associated miRNAs, such kind of data is not commonly available. On the other hand, there are huge amount of gene expression data that are publicly accessible. It will significantly improve the efficiency of characterizing miRNA’s function in cancer if we can identify cancer miRNAs directly from gene expression data. Results: We present a novel computational framework to identify the cancer-related miRNAs based solely on gene expression profiles without requiring either miRNA expression data or the matched gene and miRNA expression data. The results on multiple cancer datasets show that our proposed method can effectively identify cancer-related miRNAs with higher precision compared with other popular approaches. Furthermore, some of our novel predictions are validated by both differentially expressed miRNAs and evidences from literature, implying the predictive power of our proposed method. In addition, we construct a cancer-miRNA-pathway network, which can help explain how miRNAs are involved in cancer
    • …
    corecore