37 research outputs found

    Semantic Analysis of High-definition MPEG-2 Soccer Video Using Bayesian Network

    Get PDF
    近年,インターネットのブロードバンド化に伴い,映像配信が普及し,また,地上デジタル放送や,BS・CSデジタル放送などの衛星放送により,ユーザが試聴できる番組の数が急増してきている.パソコンやレコーダのハードディスクの容量も増え,大量の番組(コンテンツ)を保存することが可能となったが,その反面,膨大な映像データの中から,視聴者の求めるシーンを素早く検索する技術の必要性がこれまでにも増して高まって来ている.本研究はサッカー映像のリプレーシーンとゴール付近のハイライトシーンの検出方法を提案する.シーンの検出には,MPEG-2エンコーダによって圧縮されたハイビジョンサッカー映像から抽出した特徴量とハイライトシーンとの間の因果関係をベイジアンネットワークで記述する手法を用いる.ベイジアンネットワークを用いることにより,抽出された特徴量からハイライトシーンの発生を確率的に推論することが可能になる.すでにベイジアンネットワークを用いたサッカー映像のハイライトシーンの検出法は提案されているが,それらの方法では,フレーム毎に画素単位でさまざまな画像処理を映像に施すことによって求めた特徴量を利用している.そのため,画面が大きくなると計算コストも大きくなるので,リアルタイム処理には専用の処理装置が必要になる.本研究で提案する方法はMPEG-2圧縮データに含まれている符号化パラメータから特徴量を計算するので,従来法に比べて計算量が少なく,ハイビジョンなどの高解像度映像であっても,通常のPCを用いてリアルタイム処理が可能である.また,従来法では各種シーンに対してベイジアンネットワークが提案されているが,いずれも,ネットワークモデル中のシーンに関わるイベントがすべてフレーム単位で定義されている.例えば,従来法のゴールシーンに関わる,ゴールゲートの出現,観客の声,リプレーの発生等のイベントは全てフレーム単位で数えている.しかし,各イベントの開始・終了フレームを明確に判定する手法が明らかにされておらず,場合によっては人の手で行わなう必要がある.そのため,ベイジアンネットワークを学習する時に、各種イベントの時間帯の与え方に誤差が含まれる可能性がある.さらに、テストビデオから,シーン検出する時,シーンの始終時間帯の検出も困難である.本研究の提案手法では,まず,MPEG-2圧縮データから直接抽出した符号化パラメータの特徴的な変化から,カメラの切り換えに伴う画面の切り替るカット点を検出し,隣接する二つのカット点間をショットとして定義する.さらに各ショットの特徴量を調べることにより,ショットをいくつかのイベントクラスに分類する.さらに,シーンをある特徴的なイベントの発生として捉えることにより,シーンの検出を行う.本手法では,各イベントの開始・終了時刻をショットのカット点によって明確に与えることができることができ,しかもMPEG-2圧縮データから自動的に求めることが可能である.提案方式の性能評価のために,実際のビデオデータを使用した検出実験を行ったところ,ゴール付近で起こるイベントシーンの再現率が86.17%,適合率90.76%,またリプレーシーンの再現率が81.00%, 適合率92.57%という検出結果が得られた.一方,従来法の検出結果では,同一のビデオデータではないが,ゴール付近で起こるイベントシーンの再現率71.1%,適合率89.8%であり,提案方式のほうが従来法に比べ,再現率,適合率ともに上回り,とくに再現率の向上が顕著である.以上のことより,提案法の有効性が確認された.電気通信大学201

    Effect of source tampering in the security of quantum cryptography

    Get PDF
    The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum-key-distribution (MDI-QKD), the source becomes the only region exploitable by a potential eavesdropper (Eve). Phase randomization is a cornerstone assumption in most discrete-variable (DV-) quantum communication protocols (e.g., QKD, quantum coin tossing, weak coherent state blind quantum computing, and so on), and the violation of such an assumption is thus fatal to the security of those protocols. In this paper, we show a simple quantum hacking strategy, with commercial and homemade pulsed lasers, by Eve that allows her to actively tamper with the source and violate such an assumption, without leaving a trace afterwards. Furthermore, our attack may also be valid for continuous-variable (CV-) QKD, which is another main class of QKD protocol, since, excepting the phase random assumption, other parameters (e.g., intensity) could also be changed, which directly determine the security of CV-QKD.Comment: 9 pages, 6 figure

    Curvature effect on surface topography and uniform scallop height control in normal grinding of optical curved surface considering wheel vibration

    Get PDF
    © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. High-precision optical components with complex shapes or microstructures have been extensively used in numerous fields such as biomedicine, energy and aerospace. In order to accurately achieve the specific functions of the components, the form accuracy and uniform surface quality need to reach an ever-high level. To achieve this, ultra-precision normal grinding is used for machining various types of complex optical surfaces. However, the intricate variation of the workpiece curvature and grinding wheel vibration gives rise to great challenges to obtain higher precision and uniform surface conditions. In this study, the influence of curvature on surface topography generation has been investigated and a novel model of scallop height has been developed for surface topography generation in the normal grinding of the curved surface. In addition, the relative influence of the curvature is analyzed experimentally, in which the micro-waviness generation as a consequence of the unbalanced vibration of the grinding wheel is modeled and validated by experiments. Finally, the micro sinusoidal array with the setting value for scallop height is achieved by controlling the feed speed, which is determined by the local curvature of surface profile. The results indicated that the curvature variation posed a significant effect on surface uniformity and the model is valid to achieve surface scallop height control in the normal grinding effectively

    Experimental quantum key distribution secure against malicious devices

    Full text link
    The fabrication of quantum key distribution (QKD) systems typically involves several parties, thus providing Eve with multiple opportunities to meddle with the devices. As a consequence, conventional hardware and/or software hacking attacks pose natural threats to the security of practical QKD. Fortunately, if the number of corrupted devices is limited, the security can be restored by using redundant apparatuses. Here, we report on the demonstration of a secure QKD setup with optical devices and classical post-processing units possibly controlled by an eavesdropper. We implement a 1.25 GHz chip-based measurement-device-independent QKD system secure against malicious devices on \emph{both} the measurement and the users' sides. The secret key rate reaches 137 bps over a 24 dB channel loss. Our setup, benefiting from high clock rate, miniaturized transmitters and a cost-effective structure, provides a promising solution for widespread applications requiring uncompromising communication security.Comment: 28 pages, 5 figures, 4 table

    Twin-field quantum key distribution without phase locking

    Full text link
    Twin-field quantum key distribution (TF-QKD) has emerged as a promising solution for practical quantum communication over long-haul fiber. However, previous demonstrations on TF-QKD require the phase locking technique to coherently control the twin light fields, inevitably complicating the system with extra fiber channels and peripheral hardware. Here we propose and demonstrate an approach to recover the single-photon interference pattern and realize TF-QKD \emph{without} phase locking. Our approach separates the communication time into reference frames and quantum frames, where the reference frames serve as a flexible scheme for establishing the global phase reference. To do so, we develop a tailored algorithm based on fast Fourier transform to efficiently reconcile the phase reference via data post-processing. We demonstrate no-phase-locking TF-QKD from short to long distances over standard optical fibers. At 50-km standard fiber, we produce a high secret key rate (SKR) of 1.27 Mbit/s, while at 504-km standard fiber, we obtain the repeater-like key rate scaling with a SKR of 34 times higher than the repeaterless secret key capacity. Our work provides a scalable and practical solution to TF-QKD, thus representing an important step towards its wide applications.Comment: Published versio

    High-speed measurement-device-independent quantum key distribution with integrated silicon photonics

    Full text link
    Measurement-device-independent quantum key distribution (MDI-QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive measurement devices are placed in the central untrusted relay and each user requires only a low-cost transmitter, such as an integrated photonic chip. Here, we experimentally demonstrate a 1.25 GHz silicon photonic chip-based MDI-QKD system using polarization encoding. The photonic chip transmitters integrate the necessary encoding components for a standard QKD source. We implement random modulations of polarization states and decoy intensities, and demonstrate a finite-key secret rate of 31 bps over 36 dB channel loss (or 180 km standard fiber). This key rate is higher than state-of-the-art MDI-QKD experiments. The results show that silicon photonic chip-based MDI-QKD, benefiting from miniaturization, low-cost manufacture and compatibility with CMOS microelectronics, is a promising solution for future quantum secure networks.Comment: 30 pages, 12 figure
    corecore