210 research outputs found

    Grouping, spectrum-effect relationship and antioxidant compounds of Chinese propolis from different regions using multivariate analyses and off-line anti-DPPH assay

    Get PDF
    49 samples of propolis from different regions in China were collected and analyzed for their chemical compositions, contents of total flavonoids (TFC), total phenolic acid (TPC) and antioxidant activity. High-performance liquid chromatography (HPLC) analysis identified 15 common components, including key marker compounds pinocembrin, 3-O-acetylpinobanksin, galangin, chrysin, benzyl p-coumarate, pinobanksin and caffeic acid phenethyl ester (CAPE). Cluster analysis (CA) and correlation coefficients (CC) analysis showed that these propolis could be divided into three distinct groups. Principal component analysis (PCA) and multiple linear regression analysis (MLRA) revealed that the contents of isoferulic acid, caffeic acid, CAPE, 3,4-dimethoxycinnamic acid, chrysin and apigenin are closely related to the antioxidant properties of propolis. In addition, eight peak areas decreased after reacting with 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals, indicating that these compounds have antioxidant activity. The results indicate that the grouping and spectrum-effect relationship of Chinese propolis are related to their chemical compositions, and several compounds may serve as a better marker for the antioxidant activity of Chinese propolis than TFC and TPC. The findings may help to develop better methods to evaluate the quality of propolis from different geographic origins

    Thermal cycle stability of Co 64 V 15 Si 17 Al 4 high-temperature shape memory alloy

    Get PDF
    Abstract(#br)The microstructure, martensitic transformation and thermal cycle stability of Co 64 V 15 Si 17 Al 4 high-temperature shape memory alloy were studied. The results show that the martensite transformation of L2 1 /D0 22 occurred in the Co 64 V 15 Si 17 Al 4 alloy. In the Co 64 V 15 Si 17 Al 4 alloy, the transformation temperatures of forward transformation and reverse transformation are pretty high, reaching 589.6 °C and 649.1 °C, respectively. The temperatures of the martensitic transformation and the transformation heat show a neglectable difference after 200 thermal cycles in the alloy. This alloy exhibits good thermal stability during 200 thermal cycles between room temperature and 850 °C, in which the microstructure and martensitic transformation behavior have no obvious change

    Lower limb arterial calcification and its clinical relevance with peripheral arterial disease

    Get PDF
    Lower limb arterial calcification (LLAC) is associated with an increased risk of mortality and it predicts poor outcomes after endovascular interventions in patients with peripheral artery disease (PAD). Detailed histological analysis of human lower artery specimens pinpointed the presence of LLAC in two distinct layers: the intima and the media. Intimal calcification has been assumed to be an atherosclerotic pathology and it is associated with smoking and obesity. It becomes instrumental in lumen stenosis, thereby playing a crucial role in disease progression. On the contrary, medial calcification is a separate process, systematically regulated and linked with age advancement, diabetes, and chronic kidney disease. It prominently interacts with vasodilation and arterial stiffness. Given that both types of calcifications frequently co-exist in PAD patients, it is vital to understand their respective mechanisms within the context of PAD. Calcification can be easily identifiable entity on imaging scans. Considering the highly improved abilities of novel imaging technologies in differentiating intimal and medial calcification within the lower limb arteries, this review aimed to describe the distinct histological and imaging features of the two types of LLAC. Additionally, it aims to provide in-depth insight into the risk factors, the effects on hemodynamics, and the clinical implications of LLAC, either occurring in the intimal or medial layers

    Galectin-9 contributes to the pathogenesis of atopic dermatitis via T cell immunoglobulin mucin-3

    Get PDF
    BackgroundAtopic dermatitis (AD), a common type 2 inflammatory disease, is driven by T helper (TH) 2/TH22polarization and cytokines.Galectin-9 (Gal-9), via its receptor T cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3), can promote TH2/TH22 immunity. The relevance of this in AD is largely unclear.ObjectivesTo characterize the role of TIM-3 and Gal-9 in the pathogenesis of AD and underlying mechanisms.MethodsWe assessed the expression of Gal-9 and TIM-3 in 30 AD patients, to compare them with those of 30 healthy controls (HC) and to explore possible links with disease features including AD activity (SCORAD), IgE levels, and circulating eosinophils and B cells. We also determined the effects of Gal-9 on T cells from the AD patients.ResultsOur AD patients had markedly higher levels of serum Gal-9 and circulating TIM-3-expressing TH1 and TH17 cells than HC. Gal-9 and TIM-3 were linked to high disease activity, IgE levels, and circulating eosinophils and/or B cells. The rates of circulating TIM-3-positive CD4+ cells were positively correlated with rates of TH2/TH22 cells and negatively correlated with rates of TH1/TH17 cells. Gal-9 inhibited the proliferation and induced the apoptosis of T cells in patients with AD, especially in those with severe AD.ConclusionOur findings suggest thatGal-9, via TIM-3, contributes to the pathogenesis of AD by augmenting TH2/TH22 polarization through the downregulation of TH1/TH17immunity. This makes Gal-9 and TIM-3 interesting to explore further, as possible drivers of disease and targets of novel AD treatment

    A Skin Lipidomics Study Reveals the Therapeutic Effects of Tanshinones in a Rat Model of Acne

    Get PDF
    Tanshinone (TAN), a class of bioactive components in traditional Chinese medicinal plant Salvia miltiorrhiza, has antibacterial and anti-inflammatory effects, can enhance blood circulation, remove blood stasis, and promote wound healing. For these reasons it has been developed as a drug to treat acne. The purpose of this study was to evaluate the therapeutic effects of TAN in rats with oleic acid-induced acne and to explore its possible mechanisms of action through the identification of potential lipid biomarkers. In this study, a rat model of acne was established by applying 0.5 ml of 80% oleic acid to rats’ back skin. The potential metabolites and targets involved in the anti-acne effects of TAN were predicted using lipidomics. The results indicate that TAN has therapeutic efficacy for acne, as supported by the results of the histological analyses and biochemical index assays for interleukin (IL)-8, IL-6, IL-β and tumor necrosis factor alpha. The orthogonal projection of latent structure discriminant analysis score was used to analyze the lipidomic profiles between control and acne rats. Ninety-six potential biomarkers were identified in the skin samples of the acne rats. These biomarkers were mainly related to glycerophospholipid and sphingolipid metabolism, and the regulation of their dysfunction is thought to be a possible therapeutic mechanism of action of TAN on acne

    Effect of Trace Boron on Microstructure and Mechanical Properties of Ti-9V-3Al-3Cr-3Zr-35Mo Alloy

    Get PDF
    Conference Name:2nd International Conference on Manufacturing Science and Engineering. Conference Address: Guilin, PEOPLES R CHINA. Time:APR 09-11, 2011.The effects of trace boron on microstructure and mechanical properties of beta type Ti-9V-3Al-3Cr-3Zr-3.5Mo (wt. %) alloy have been investigated in this study. Upon the addition of 0.02 wt. % boron, the grain size of the B-modified alloy was almost four times smaller than that of the B-free alloy. Accordingly, the tensile strength and elongation of B-modified alloy increased from 712 MPa and 14.6 % to 813 MPa and 17.9 %, respectively, mainly due to the effect of grain refinement

    Heusler type CoNiGa alloys with high martensitic transformation temperature

    Get PDF
    A strong need exists to develop new kinds of high-temperature shape-memory alloys. In this study, two series of CoNiGa alloys with different compositions have been studied to investigate their potentials as high-temperature shape-memory alloys, with regard to their microstructure, crystal structure, and martensitic transformation behavior. Optical observations and X-ray diffractions confirmed that single martensite phase was present for low cobalt samples, and dual phases containing martensite and gamma phase were present for high cobalt samples. It was also found that CoNiGa alloys in this study exhibit austenitic transformation temperatures higher than 340 degrees C, showing their great potentials for developing as high-temperature shape-memory alloys

    Genome-wide identification of nitrate-responsive microRNAs by small RNA sequencing in the rice restorer cultivar Nanhui 511

    Get PDF
    Rice productivity relies heavily on nitrogen fertilization, and improving nitrogen use efficiency (NUE) is important for hybrid rice breeding. Reducing nitrogen inputs is the key to achieving sustainable rice production and reducing environmental problems. Here, we analyzed the genome-wide transcriptomic changes in microRNAs (miRNAs) in the indica rice restorer cultivar Nanhui 511 (NH511) under high (HN) and low nitrogen (LN) conditions. The results showed that NH511 is sensitive to nitrogen supplies and HN conditions promoted the growth its lateral roots at the seedling stage. Furthermore, we identified 483 known miRNAs and 128 novel miRNAs by small RNA sequencing in response to nitrogen in NH511. We also detected 100 differentially expressed genes (DEGs), including 75 upregulated and 25 downregulated DEGs, under HN conditions. Among these DEGs, 43 miRNAs that exhibited a 2-fold change in their expression were identified in response to HN conditions, including 28 upregulated and 15 downregulated genes. Additionally, some differentially expressed miRNAs were further validated by qPCR analysis, which showed that miR443, miR1861b, and miR166k-3p were upregulated, whereas miR395v and miR444b.1 were downregulated under HN conditions. Moreover, the degradomes of possible target genes for miR166k-3p and miR444b.1 and expression variations were analyzed by qPCR at different time points under HN conditions. Our findings revealed comprehensive expression profiles of miRNAs responsive to HN treatments in an indica rice restorer cultivar, which advances our understanding of the regulation of nitrogen signaling mediated by miRNAs and provides novel data for high-NUE hybrid rice cultivation
    corecore