36 research outputs found

    Depth CNNs for RGB-D scene recognition: learning from scratch better than transferring from RGB-CNNs

    Full text link
    Scene recognition with RGB images has been extensively studied and has reached very remarkable recognition levels, thanks to convolutional neural networks (CNN) and large scene datasets. In contrast, current RGB-D scene data is much more limited, so often leverages RGB large datasets, by transferring pretrained RGB CNN models and fine-tuning with the target RGB-D dataset. However, we show that this approach has the limitation of hardly reaching bottom layers, which is key to learn modality-specific features. In contrast, we focus on the bottom layers, and propose an alternative strategy to learn depth features combining local weakly supervised training from patches followed by global fine tuning with images. This strategy is capable of learning very discriminative depth-specific features with limited depth images, without resorting to Places-CNN. In addition we propose a modified CNN architecture to further match the complexity of the model and the amount of data available. For RGB-D scene recognition, depth and RGB features are combined by projecting them in a common space and further leaning a multilayer classifier, which is jointly optimized in an end-to-end network. Our framework achieves state-of-the-art accuracy on NYU2 and SUN RGB-D in both depth only and combined RGB-D data.Comment: AAAI Conference on Artificial Intelligence 201

    Joint Learning of CNN and LSTM for Image Captioning

    Get PDF
    Abstract. In this paper, we describe the details of our methods for the participation in the subtask of the ImageCLEF 2016 Scalable Image Annotation task: Natural Language Caption Generation. The model we used is the combination of a procedure of encoding and a procedure of decoding, which includes a Convolutional neural network(CNN) and a Long Short-Term Memory(LSTM) based Recurrent Neural Network. We first train a model on the MSCOCO dataset and then fine tune the model on different target datasets collected by us to get a more suitable model for the natural language caption generation task. Both of the parameters of CNN and LSTM are learned together

    Nicotianamine, a Novel Enhancer of Rice Iron Bioavailability to Humans

    Get PDF
    Background: Polished rice is a staple food for over 50 % of the world’s population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world. Methodology/Principal Findings: We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1) fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA) concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1:1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability) in promoting more ferritin synthesis. Conclusions: Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for thei

    A Novel Strategy to Construct Yeast Saccharomyces cerevisiae Strains for Very High Gravity Fermentation

    Get PDF
    Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes

    Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold

    No full text

    Image Representations With Spatial Object-to-Object Relations for RGB-D Scene Recognition

    No full text

    Multipath Convolutional-Recursive Neural Networks for Object Recognition

    No full text
    Part 8: Pattern RecognitionInternational audienceExtracting good representations from images is essential for many computer vision tasks. While progress in deep learning shows the importance of learning hierarchical features, it is also important to learn features through multiple paths. This paper presents Multipath Convolutional-Recursive Neural Networks(M-CRNNs), a novel scheme which aims to learn image features from multiple paths using models based on combination of convolutional and recursive neural networks (CNNs and RNNs). CNNs learn low-level features, and RNNs, whose inputs are the outputs of the CNNs, learn the efficient high-level features. The final features of an image are the combination of the features from all the paths. The result shows that the features learned from M-CRNNs are a highly discriminative image representation that increases the precision in object recognition

    A Traffic-Aware Federated Imitation Learning Framework for Motion Control at Unsignalized Intersections with Internet of Vehicles

    No full text
    The wealth of data and the enhanced computation capabilities of Internet of Vehicles (IoV) enable the optimized motion control of vehicles passing through an intersection without traffic lights. However, more intersections and demands for privacy protection pose new challenges to motion control optimization. Federated Learning (FL) can protect privacy via model interaction in IoV, but traditional FL methods hardly deal with the transportation issue. To address the aforementioned issue, this study proposes a Traffic-Aware Federated Imitation learning framework for Motion Control (TAFI-MC), consisting of Vehicle Interactors (VIs), Edge Trainers (ETs), and a Cloud Aggregator (CA). An Imitation Learning (IL) algorithm is integrated into TAFI-MC to improve motion control. Furthermore, a loss-aware experience selection strategy is explored to reduce communication overhead between ETs and VIs. The experimental results show that the proposed TAFI-MC outperforms imitated rules in the respect of collision avoidance and driving comfort, and the experience selection strategy can reduce communication overheads while ensuring convergence
    corecore