47 research outputs found

    Active control of magnetoresistance of organic spin valves using ferroelectricity

    Get PDF
    Organic spintronic devices have been appealing because of the long spin life time of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance.1 Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer. We show that the resistance can be controlled by not only the spin alignment of the two ferromagnetic electrodes, but also by the electric polarization of the interfacial ferroelectric layer: the MR of the spin valve depends strongly on the history of the bias voltage which is correlated with the polarization of the ferroelectric layer; the MR even changes sign when the electric polarization of the ferroelectric layer is reversed. This new tunability can be understood in terms of the change of relative energy level alignment between ferromagnetic electrode and the organic spacer caused by the electric dipole moment of the ferroelectric layer. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves and shed light on the mechanism of the spin transport in organic spin valves

    First observation of the decay Λ_(c)⁺ → nK_(S)⁰π⁺π⁰

    No full text
    Based on 4.5 fb−1 of e+e− collision data accumulated at center-of-mass energies between 4599.53 MeV and 4698.82 MeV with the BESIII detector, the decay Λ+c→nK0Sπ+π0 is observed for the first time with a significance of 9.2σ. The branching fraction is measured to be (0.85±0.13±0.03)%, where the first uncertainty is statistical and the second systematic, which differs from the theoretical prediction based on isospin by 4.4σ. This indicates that there may be resonant contributions or some unknown dynamics in this decay

    Observation of η_(c)(1S, 2S) and χ_(cJ) decays to 2(π⁺π^(−))η via ψ(3686) radiative transitions

    No full text
    Based on 2.7×109 ψ(3686) decays collected with the BESIII detector, the radiative decay ψ(3686)→γ2(π+π−)η is investigated to measure properties of S- and P-wave charmonium states. The branching fraction of the decay ηc(1S)→2(π+π−)η, which is found to have a strong dependence on the interference pattern between ηc(1S) and non-ηc(1S) processes, is measured in both destructive and constructive interference scenarios for the first time. The mass and width of the ηc(1S) are measured to be M=(2984.14±0.13±0.38) MeV/c2 and Γ=(28.82±0.11±0.82) MeV, respectively. Clear signals for the decays of the χcJ(J=0,1,2) and the ηc(2S) to 2(π+π−)η are also observed for the first time, and the corresponding branching fractions are measured. The ratio of the branching fractions between the ηc(2S) and ηc(1S) decays is significantly lower than the theoretical prediction, which might suggest different dynamics in their decays
    corecore