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Active control of magnetoresistance of organic
spin valves using ferroelectricity
Dali Sun1,2,3,*,w, Mei Fang1,*, Xiaoshan Xu2, Lu Jiang2,3, Hangwen Guo2,3, Yanmei Wang1, Wenting Yang1,

Lifeng Yin1, Paul C. Snijders2,3, T.Z. Ward2, Zheng Gai2,4, X.-G. Zhang4,5, Ho Nyung Lee2 & Jian Shen1,3

Organic spintronic devices have been appealing because of the long spin lifetime of the

charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In

previous studies, the control of resistance of organic spin valves is generally achieved by the

alignment of the magnetization directions of the two ferromagnetic electrodes, generating

magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves

by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the

organic spacer: the magnetoresistance of the spin valve depends strongly on the history of

the bias voltage, which is correlated with the polarization of the ferroelectric layer; the

magnetoresistance even changes sign when the electric polarization of the ferroelectric

layer is reversed. These findings enable active control of resistance using both electric and

magnetic fields, opening up possibility for multi-state organic spin valves.
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S
ince the pioneering work by Dediu et al.1 and Xiong et al.2,
many of the follow-up studies have focused on achieving
high magnetoresistance (MR) in organic spin valves (OSVs)

and uncovering the underlying transport mechanisms3–11.
It has been generally acknowledged that the interfaces between
the organic layer and the ferromagnetic electrodes play a critical
role in determining the actual spin-dependent transport
mechanism12–15. Barraud et al.16 studied the spin transport of
an OSV in which the thin organic layer serves as a tunnelling
barrier as opposed to a diffusive spacer. A spin transport model
describing the role of interfacial spin-dependent metal/organic
hybridization on the amplitude and sign of the MR was put
forward16,17. Recently, Schulz et al.18 observed a reversal of the
spin polarization of extracted charge carriers by introducing a
thin interfacial permanent dipolar layer (LiF). This work indicates
that the local electric dipole moment at the interface is important
for MR, although in such a device the added dipolar layer plays
only a passive role in terms of controlling MR.

In the following, we employ a ferroelectric (FE) thin interfacial
layer between the organic semiconductor and the ferromagnetic
electrode in OSV to achieve active control of MR. The material of
choice for the FE layer is PbZr0.2Ti0.8O3 (PZT), which has a large
polarization (B80mC cm� 2)19. The PZT layer can induce strong
interfacial dipoles and built-in electric field between the organic
spacer layer and the ferromagnetic electrode. The interfacial
dipole is switchable by external electric field, potentially allowing
the control of the spin polarization of injected carriers in organic
spintronics. We show that the resistance can be controlled by not
only the spin alignment of the two ferromagnetic electrodes3, but
also by the electric polarization of the PZT layer. The sign of MR
changes when electric polarization of the PZT layer is reversed.
This new tunability can be understood in terms of the change of
relative energy level alignment between ferromagnetic electrode
and the organic spacer caused by the electric dipole moment of
the FE layer.

Results
Device structure and characterizations of the PZT films. Our
fabricated OSVs consist a 65-nm Alq3 (tris-(8-hydroxyquinoline)
aluminum) layer sandwiched between a 5-nm-thick PZT layer
epitaxially grown on a 30-nm-thick La0.67Sr0.33MnO3 (LSMO)
film-buffered SrTiO3 (STO) substrate, and a 10-nm-thick
(nominal thickness) cobalt layer with gold capping. In this
LSMO/PZT/Alq3/Co junction (FE-OSV), Co and LSMO serve as
the top and bottom magnetic electrodes, respectively. The device
structure is schematically shown in Fig. 1a. As discussed in the
following, such kind of devices exhibit striking tunability, that is,
both the amplitude and sign of MR are tunable due to the pre-
sence of the FE PZT.

After epitaxial growth of PZT on LSMO/STO, the PZT layer
has a smooth surface with atomically flat terraces, as character-
ized by atomic force microscopy shown in Fig. 1b. This provides
an ideal base for preparing a well-defined Alq3/PZT interface. The
purpose of introducing the 5-nm-thick-PZT is to tune the energy
level alignment between the Alq3 and LSMO layers because the
polarization in PZT is switchable by applying an electric field.
Therefore, the polarization reversal of the PZT is crucial. Here we
have characterized the polarization reversal of the PZT films used
in the FE-OSV devices with piezoelectric force microscopy
(PFM). Figure 1c shows a PFM image of the PZT film with a part
of the film poled by a conducting tip with ±2.5 V relative to the
LSMO bottom electrode. It shows that the polarization of the as-
grown films is pointing ‘up’, and a clear reversal of polarization
between ‘up’ and ‘down’ states can be created by sign reversal of
the applied voltage. Figure 1d shows the voltage dependence of

the polarization. It is clear that the polarization of the PZT film
(5 nm in thickness) starts to switch to the ‘down’ state when the
voltage of the scanning probe exceeds 0.8 V. The polarization
reversal of the PZT in the FE-OSV is characterized by the
measurements of the hysteretic polarization-voltage dependence.
As shown in Fig. 1e, with the Alq3/Co/Au layers on top of PZT,
the coercive voltage is B2 V. Figure 1f shows the transmission
electron microscope (TEM) image for the cross-section of the FE-
OSV. No significant diffusion of Co atoms into the Alq3 layer is
observed (see Supplementary Fig. 1 and Supplementary Note 1).

Hysteretic behaviour of the MR. It has been known that MR
depends sensitively on the measuring voltage (VMR). Previous
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Figure 1 | Structure of the organic spin valves and characterization of

ferroelectricity in the epitaxial PZT. (a) Schematic structure of a Au/Co/

Alq3/PZT/LSMO organic spin valve (FE-OSV). (b) Atomic force

microscopy topography image of a PZT layer (5 nm in thickness) epitaxially

grown on a LSMO (30 nm)/STO substrate. (c) PFM (phase) response

measured after successively switching the polarization of the PZT film by

applying þ 2.5 V and � 2.5 V on the tip with respective to the LSMO

bottom electrode. Note that the protocol of voltage polarity is different in

PFM measurements from that in resistance measurements. (d) PFM image

showing the polarization reversal by gradually increasing the applied

voltage. The ‘up’ (‘down’) arrow corresponds to the polarization pointing

out of (into) the film surface. Scale bar, 500 nm (b–d). (e) A typical

polarization-voltage loop for the FE-OSV (device A). The black and pink

circles illustrate the ‘minor loops’ corresponding to VMAX of ±0.5 and
±1.2 V, respectively. The orange (blue) arrow indicates the direction of the

ramp voltage: sweeping down (up) before the MR scans. (f) TEM image

for FE-OSV device. Different layers can be distinguished as labelled.

Scale bar, 20 nm.
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studies indicated that MR of LSMO/Alq3/Co junctions (LSMO-
OSV) increases with decreasing VMR, reaching a maximum when
VMR is close to zero2,16. For our FE-OSV junctions, its MR
depends not only on VMR, but also on the history of the voltage
applied, giving rise to a strong hysteretic behaviour. We
characterize this hysteretic behaviour by measuring MR (VMR)
profile after applying a ramping voltage (VMAX) that is larger than
VMR (see Supplementary Fig. 2 and Supplementary Note 2 for the
detailed measurement protocol).

As shown in Fig. 2, for a FE-OSV containing an as-grown PZT
layer, the MR (at T¼ 11 K) is always negative and is the largest
when VMR is near zero, which is similar to numerous previous
studies on LSMO-OSV2,4–6,8–11. The different features in the
FE-OSV are: (1) the MR(VMR) profile is strongly affected by
the initial voltage (VMAX) and (2) a positive (negative) VMAX

leads to a negative (positive) shift of the MR(VMR) profile
along the VMR axis (Fig. 2d,e). This shift (DV) is closely tied
to the hysteretic behaviour of the PZT layer (so-called minor
loops, see Fig. 1e) and increases with increasing VMAX, as shown
in Fig. 2f. The switching fields, MR uncertainty and MR loops
reproducibility in FE-OSVs are shown in Supplementary Figs 3–5
and Supplementary Notes 3 and 4, respectively.

The hysteretic behaviour of the MR was not observed in OSVs
without the FE layer, including a conventional LSMO/Alq3/Co
OSV (LSMO-OSV) and a LSMO/STO/Alq3/Co OSV (STO-OSV)
in which the 5-nm PZT is replaced by 5-nm STO (see
Supplementary Figs 6 and 7, and Supplementary Note 5 for
detailed MR loops and MR (VMR) profiles). This indicates that the
hysteretic behaviour of the MR in FE-OSV is tied to the presence
of PZT. The distinctly different behaviour between the FE-OSV
and the PZT-free OSVs (LSMO-OSV and STO-OSV) also allow
us to exclude the possibility of resistive bistability mechanism
caused by the existence of the trap states or current conduct path
inside the Alq3 layer20,21, as otherwise similar MR behaviour

should be observed in both types of devices. We have also
performed measurements on a LSMO/PZT/Co magnetic tunnel
junction (FE-MTJ, see Supplementary Fig. 8). Although VMAX
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affects the MR (VMR) profile, which confirms the results of Pantel
et al.22 and Valencia et al.23, it does not induce any shift of the
MR (VMR) profile along the VMR axis. The comparison of the MR
(VMR) profiles of the FE-OSV and the FE-MTJ suggests that the
effective voltage generated by the dipole of the PZT (instead of
the interfacial bonding) is responsible for the hysteretic behaviour
of the MR in the FE-OSV. The FE-MTJ does not show hysteretic
behaviour of MR, because no direct dipole exists on the surface of
the PZT due to the screening effect from the two metal electrodes
in direct contact with the PZT layer.

A schematic model is illustrated in Fig. 3 to explain this
hysteretic behaviour of MR in the FE-OSV. When a VMAX is
applied to the junction, the polarization of the PZT gets modified.
Owing to the dipole moment created by the electric polarization
of PZT, the effective voltage Veff applied on the Alq3 layer equals
VMRþD, where D is the vacuum level shift caused by the
remnant dipole moment of PZT. When a positive (negative)
VMAX is applied, D becomes larger (smaller), which explains why
the MR (VMR) profile can be shifted by VMAX.

Switch of the MR sign. Remarkably, a reversal of the polarization
of the PZT layer leads to a sign change of the MR in the FE-OSV.
After measuring the MR and MR (VMR) profile (Fig. 4a–c) for the
FE-OSV device B (PZT layer in the as-grown state), we measured

polarization-voltage dependence up to ±5 V. The measurement
ended at � 5.0 V to pole the PZT to the ‘down’ state. The MR
measurements of the FE-OSV device after this treatment are
shown in Fig. 4d,e,g,h. The shape of the MR (VMR) profile
changes dramatically, as shown in Fig. 4i. In particular, the sign of
the MR changes from negative (Fig. 4a,b) to positive (Fig. 4d,g,h)
for a certain range of VMR. A close correlation between the
polarization of PZT and the sign of the MR can be identified by
comparing the hysteretic behaviour of the MR (VMR) profile and
the possible minor polarization-voltage loop of the PZT, as illu-
strated in Fig. 4f, that is, when the polarization of PZT is negative
enough (more ‘down’ state), the MR becomes positive.

The physical origin of MR sign of the LSMO/Alq3/Co junctions
has been studied previously by Barraud et al. using
nanoindentation-based devices. It was argued that first, the spin
polarization alignment P* at the Co/Alq3 interface is positive
when electrons move from Co to Alq3, that is, P*(Alq3-Co)40
where the arrow indicates the direction of the electric current4,24;
second, the density of states for Alq3 at the Alq3/LSMO interface
is spin polarized due to the coupling between the two materials,
causing P*(LSMO-Alq3)o0 when the Alq3 serves as a diffusive
spacer. Following these arguments, Barraud et al.16 concluded
that the sign of MR at small measurement voltages is determined
by the sign of the product of P*(Alq3-Co) and P*(LSMO-
Alq3); the result is negative. In the FE-OSV studied here, the
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P*(Alq3-Co)40 can be assumed similarly; the polarization
alignment P* between LSMO and Alq3 is not changed by
inserting a thin layer (5 nm) of as-grown PZT or STO, but can be
changed by poling the PZT layer, according to the behaviour of
the observed MR. This novel feature in FE-OSV must be due to
the more complex LSMO/PZT-Alq3 interface. We propose the
following model based on the relative energy level alignment
between Alq3 and LSMO to understand the switching of MR sign
in FE-OSV.

Here we consider mainly the hole transport, because for Alq3

the energy difference between the highest occupied molecular
orbital (HOMO) and Fermi levels of the two metallic LSMO and
Co electrodes are much smaller than that between the lowest
unoccupied molecular orbital and the Fermi levels2,18,25. As
shown in Fig. 5a, when the polarization of the PZT layer is
pointing ‘up’ (the as-grown state) or zero (the same case as for
STO), the hole injection from the LSMO electrode for positive
VMR is from the Fermi level (which lies in the spin majority
band) of LSMO to the HOMO of Alq3, which is the same
as in the LSMO-OSV. Therefore, P*(LSMO/PZT-Alq3)o0,
corresponding to a negative MR considering P*(Alq3-Co)40 as
discussed above2,4. When the polarization of the PZT layer is
pointing ‘down’, the HOMO of A1q3 is shifted up due to the
dipole moment of PZT. Therefore, another state of the LSMO
with opposite spin polarization may be accessible (Fig. 5b).
Hence, P*(LSMO/PZT-Alq3) changes the sign and becomes
positive, corresponding to a reversed, positive MR.

Our proposed model relies on two key assumptions: (1) the
dipole moment of the PZT layer shifts the Alq3 HOMO level and
(2) the shift of the Alq3 HOMO level results in a shift of the initial
state of LSMO for the hole injection between energy band of
opposite spin polarizations. The first assumption was used by
Schultz et al.18 to explain the MR sign reversal in a FeCo/Alq3/
LiF/NiFe junction by proposing a shift of the HOMO of Alq3 due

to the dipole moment of LiF layer. The second assumption can be
justified by the half metallicity of LSMO. As illustrated in Fig. 5,
the conduction band of LSMO splits into spin majority and
minority bands due to the exchange interaction, causing half
metallicity because the Fermi level lies within the fully polarized
spin majority band26–28. Therefore, when the HOMO of Alq3 is
shifted up due to the reversal of dipole moment of PZT, the initial
state of LSMO for hole injection may change to spin minority
band with opposite spin polarization. Note that this reversed
dipole moment of PZT needs to be large enough to shift the
HOMO level of Alq3 to ‘reach’ the spin minority band of LSMO
and obtain reversed positive MR values. Otherwise, only negative
MR values will be observed, as shown in Fig. 4f (also see
Supplementary Fig. 9 and Supplementary Note 6).

Besides changing the energy level alignments, switching the
electric polarization of the FE layer may also modify the coupling
between the FE layer and the magnetic electrode, depending on
the detailed electronic structure of the electrode and the nature of
the electric polarization of the FE material29–31. These effects may
also change the spin polarization at the interface between the FE
material and the metal electrode22,23,31. However, both the
magnetic structure of the LSMO and the spin polarization of the
PZT are not expected to be affected very much by the electric
polarization of the PZT, because of the robust magnetic
properties of the La0.7Sr0.3MnO3 with given composition (far
from the metal-insulator phase boundary) and the large distance
between the Mn site from LSMO and Ti sites from PZT at the
interface22,23,30,31.

Another possible scenario involves the change of carrier type
when the energy level alignment between LSMO and Alq3 is
changed: the carriers take the path of the HOMO (lowest
occupied molecular orbital),that is, hole (electron) transport in
Alq3 when the energy levels of Alq3 is shifted ‘down’ (‘up’) due to
the ‘up’ (‘down’) polarization of the PZT layer. This, however,
contradicts our experimental observations because in the FE-OSV
with the as-grown (‘up’ polarization) PZT, the MR is negative, the
same as that in the STO-OSV or LSMO-OSV without any
interfacial layers, suggesting that the carrier type in FE-OSV is
most probably holes instead of electrons18,25, as in the STO-OSV
or LSMO-OSV.

Discussion
The active control of the energy level alignment between the
electrodes and the organic material, manifested here in the active
control of the MR, not only carries promises for multistate
control of organic spin-valve devices, but will also impact other
organic electronic devices, in particular those applied in
photovoltaics and solid-state lighting. Specifically, the charge
carrier injection efficiency of the organic light emitting diode is
determined by the relative alignment between the Fermi energy of
the electrode and the energy levels of the organic material32. The
charge collection efficiency in an organic photovoltaic device also
depends on the alignment of the energy levels of the acceptor
organic material and the electrode33. Therefore, the realization of
the active control of the level alignment using an FE interfacial
layer demonstrated in this letter may also lead to successful
optimization of other organic electronic devices by tailoring the
energy landscape of the comprising materials using a tunable
interfacial layer.

Methods
Device fabrication. PZT (5 nm), STO (5 nm) and LSMO (30 nm) thin films
epitaxially grown on STO (001) substrate by pulsed laser deposition were fabricated
into bottom electrodes using conventional wet-etching photolithography11,34.
The Alq3 (99.995%, Aldrich) layer (thickness: 65 nm) was deposited by thermal
evaporation onto a room-temperature substrate in a vacuum chamber with base

Vacuum level
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HOMO

LUMO

EF

PZT ↓
MR > 0

LSMO

PZT ↑

AIq3 AIq3

HOMO

LUMO

EF
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Δ

h

h

Figure 5 | Model of MR sign reversal in FE-OSV. (a,b) The energy

diagrams of the FE-OSV device when the electric polarization of the PZT is

‘up’ and ‘down’, respectively. The white circles represent the injected holes

in the device. The blue (red) arrows indicate the injection of spin-polarized

holes from the majority (minority) band of LSMO.
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pressure of 5.0� 10� 9 Torr. Without breaking the vacuum, the Co (10 nm)/Au
(7 nm) was then deposited by thermal evaporation at substrate temperature of
280 K to complete the formation of the top electrode in a crossbar configuration
through the shadow mask. The thickness of layers were controlled by a quartz
thickness monitor. The device area is B200 mm� 50 mm.

Device characterizations. Atomic force microscopy topography images and PFM
were taken using a Veeco Dimension 3100 at room temperature. The TEM samples
were prepared by a FEI Dual-beam (Focus-Ion-Beam/SEM) system, and high-
resolution TEM images were taken by a FEI Tecnai transmission electric micro-
scope with beam energy of 200 kV. Radiant Premier II FE measuring system was
used to detect the polarization-voltage loops of the devices at 50 Hz. Magnetometer
measurements were carried out using a Quantum Design superconducting
quantum interference device system. Magnetic fields were applied in the plane of
the thin film. Transport measurements were carried out using a Quantum Design
Physical Property Measurement System (PPMS) combined with a Keithley 2400
source meter at T¼ 11 K. Magnetic fields were applied in the plane of the thin film.
The MR is defined as: MR¼ (Rantiparallel�Rparallel)/Rparallel, where Rantiparallel is the
junction resistance in the antiparallel magnetic configuration and Rparallel is the
resistance at the parallel configuration. The detailed MR measurement protocols
are shown in Supplementary Fig. 2 and Supplementary Note 2.
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SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Figure 1｜TEM images for FE-OSV.  a to d, TEM images with different 
magnification. Only slight interdiffusion between Co and Alq3 layer is observed. The random 
contaminations from “Ga+” due to the focused ion beam (FIB) are marked, which exists in both Alq3 
layer and Co/Au electrodes. 
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Supplementary Figure 2｜Measurement protocol. a and c Ramping positive and negative bias list 
before taking the MR loops, respectively. VMR is the bias when the ramping curve stops, followed by a 
R(H) measurement at this bias. b and d MR (VMR) profile according to two different ramping curves in 
a and c, respectively. The orange/ blue arrows present the sweeping direction of VMR. 
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Supplementary Figure 3 ｜SQUID measurement. a and c, M-H loops for FE-OSV device A with 
two different magnetic field range (device in the Fig. 2 of the main text). b and d, M-H loops for FE-
OSV device B (device in the Fig. 4 of the main text). 
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Supplementary Figure 4 ｜MR uncertainty. a and b, MR loops averaged over difference number of 
scans (VMAX= +0.5V, VMR= -0.3V, device B). c, Statistical MR uncertainty as a function of the 
number of scans. d, MR (VMR) profiles with error bars representing the statistical uncertainty. MR 
values are calculated separately while magnetic field is ramping “down” (black) and “up” (red). The 
averaged values (green) are also shown in the figure; these averaged values are the MR values 
reported in the main text. The differences between the MRs measured when the field is ramping up 
and when the field is ramping down are taken as the systematic MR uncertainty. 
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Supplementary Figure 5｜  Reproducibility of the MR loops. a and b, Comparison of MR loops 
under the sequence of three ramp voltages (VMAX: -1.2V, +1.2V and -1.2V) at VMR= -0.2V and -1.0V, 
respectively (FE-OSV A).  The resistance of the device is recovered to initial state after the sequence. 
c, Normalized MR loops for VMR: -0.2V and -1.0V with VMAX: +/- 1.2V. Note that the switching field 
for the same device does not changes under different ramp voltage process (both saturated at ~2 kOe), 
although the magnitude of MR is different. 
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Supplementary Figure 6｜LSMO-OSV control device. a, MR loops of LSMO-OSV at the same 
bias voltage (VMR = +0.03V) but with two different VMAX (+/- 1.2V). b to d, MR(VMR) profiles and the 
dependence on VMAX. No hysteretic behavior of MR is observed in the device. The measurements were 
taken at T=11K. 
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Supplementary Figure 7｜STO-OSV control device. a, Energy level diagram for LSMO/STO-OSV 
device. b, Energy level diagram for LSMO/PZT-OSV device (without dipoles). c and d, R(H) 
dependence of STO-OSV device at VMR=-0.61V and -0.17V, respectively. e, MR(VMR) profiles of 
STO-OSV device. No shift of the profile is observed. The measurements were taken at T=11K. f, 
Surface of the 5 nm STO grown on 30 nm LSMO on STO substrate measured using atomic force 
microscope (5 µm × 5 µm); the clear atomic terrace indicates the flatness of the surface. 
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Supplementary Figure 8｜FE-MTJ control device a, MR loops of FE-MTJ at the same bias voltage 
(VMR = -0.04V) but with two different VMAX (+/- 2.0V). b to d, MR(VMR) profiles as the dependence of 
VMAX. No hysteretic behavior of MR is observed in the device. “a1” and “a2’” in d corresponds to the 
MR loops taken in a (VMAX: +2.0V and -2.0V respectively).  The measurements were taken at T=11K. 
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Supplementary Figure 9｜MR sign reversal. a and c, MR (VMR) profile measured with as-grown 
PZT layer and PZT layer after polarization reversal respectively, as same as in Fig. 4. b, schematic 
correlation between the MR (VMR) profile and the polarization of the PZT layer. d to f, The measured 
relation between  polarization and voltage of the FE-OSV device. The yellow (blue) arrows indicated 
the direction of ramping the voltage VMAX from positive to negative bias (negative to positive). Red 
(blue) spots present the starting polarization states of PZT. 
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SUPPLEMENTARY NOTES 
 

Supplementary Note 1: Structural characterization using transmission electron microscopy 
(TEM) 

The structure of the LSMO/PZT/Alq3/Co (FE-OSV) devices was characterized by TEM. The 
deposited layers (Pt, Au, Co, Alq3, PZT, and LSMO) can be distinguished by the contrast (see 
Supplementary Fig. 1) in the TEM image. The nominal thickness of the Co layer is 10 nm 
according to the calibration. The continuous layer of Co is 5 nm. The diffusion of Co atoms into 
Alq3 is observed; but the low deposition temperature (280 K) suppresses the diffusion depth 
down to ~7 nm, which is much smaller than the measured thickness of Alq3 layer (65 nm). The 
roughness of the interface between Alq3 and Co is approximately 2 nm, which is also small. 
Therefore, the short circuit (possibly caused by the diffusion of Co atoms to the LSMO electrode) 
is unlikely in the FE-OSV devices in this work.  
 

 
Supplementary Note 2: Measurement protocol of the MR (VMR) profiles 

The magneto-resistance (MR) is obtained by sweeping the magnetic field when the bias is fixed 
at a certain value (VMR). In order to have a well-defined polarization state for the PZT during the 
MR measurements, the following protocol of bias voltage history is followed. Step (1): The bias 
voltage is slowly ramped to a high value VMAX to restore the polarization of the PZT. Step (2): 
The bias voltage is slowly ramped to VMR. Step (3): The MR loop is measured while the bias 
voltage is fixed at VMR. Step (4): The bias voltage is slowly ramped to zero. Supplementary Fig. 
2a shows an example of the bias voltage history for VMAX = +1.2 V and VMR = +0.5V. 
Supplementary Fig. 2b shows an example of the bias voltage dependence of the MR [or 
MR(VMR) profile] where VMAX is a constant value of +1.2 V. Supplementary Fig. 2c shows an 
example of the bias voltage history for VMAX = -1.2 V and VMR = -0.3 V. Supplementary Fig. 2d 
shows an example of MR (VMR) profile where VMAX is a constant value of -1.2 V. A clear 
hysteretic effect is observed by the difference between Supplementary Fig. 2b and d: the MR 
(VMR) profile is strongly affected by the history of the bias voltage (Fig. 2e) which also 
determines the polarization state of the PZT. 

 
 

Supplementary Note 3: Magnetometry measurement using a superconducting quantum 
interference device (SQUID) 

In the OSV devices, two magnetic electrodes of intrinsically different magnetic coercive fields 
(LSMO and Co in this work) are chosen so that both parallel and antiparallel alignments of 
magnetizations of the electrodes can occur depending on the history of the applied magnetic field. 
The field dependences of the magnetizations of the FE-OSV devices are measured to verify the 
two different coercive fields. As shown in Supplementary Fig. 3, the two-step magnetization 
consists of a “soft” component and a “hard” component which presumably correspond to LSMO 
and Co respectively. The antiparallel alignment of the magnetization of the two electrodes can be 
obtained between the two steps. According to Supplementary Fig. 3, the coercive field of the 
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“soft” component is less than 100 Oe and the saturation field for the “hard” component is larger 
than 500 Oe. 

As shown in Supplementary Fig. 1, the noticeable interdiffusion between the Co and Alq3 
layers is expected to affect the coercive field of Co electrodes due to the interfacial roughness, 
proximity effect or mixing between Co and Alq3 molecules. The size distribution of the Co 
particles within the interdiffusion region may cause a distribution of the coercive field and 
saturation field. Under the same growth condition (thickness, deposition rate, deposited 
temperature for Alq3 and Co), the coercive and saturation field of Co electrodes still vary for 
different devices, as shown in Supplementary Fig. 3 for device A and B. These differences may 
cause the differences in the MR loops for two devices. Noted that the switching fields for LSMO 
electrodes are similar in both devices since LSMO is not affected by the interdiffusion. 
 

 
Supplementary Note 4: Uncertainties of the MR measurements 

The measurement uncertainties of the MR come from both statistical and systematic sources, i.e. 
statistical uncertainty and systematic uncertainty. In principle, the statistical error can be 
minimized by increasing the number of measurements. However, the long measurement time 
allows typically only 4 measurements. Therefore, the final measurement uncertainties include 
significant contributions from both statistical and systematic contributions. The operational 
estimation of the MR measurement uncertainties (error bars) are explained as the follows.  

Statistical uncertainty 
Supplementary Fig. 4 shows the MR measurements in a typical FE-OSV device at low 
temperature. The R(H) relations of a single and multiple measurements (scans) are displayed in 
Supplementary Fig. 4 a and b respectively, where R is the resistance and H is the magnetic field. 
The background noise of the resistance measurements leads to a certain uncertainty of the MR 
measurements, which is defined as the statistical uncertainty of the MR measurements. It is clear 
that the background noise is reduced as the number of measurements is increased. The statistical 
uncertainty of the MR measurements is reduced accordingly, as shown in Supplementary Fig. 
4c. Considering the tradeoff between the measurement time and measurement uncertainty, the 
MR values shown in the main text correspond typically to the result of 4 measurements. 

Systematic uncertainty: 
In addition to the statistical uncertainty, the systematic uncertainty in the MR measurement is 
also present. Since the systematic uncertainty comes from the imperfection of the measurement 
setup and the samples, they may or may not be easily estimated. One way of estimating the 
systematic error is by observing the asymmetry of the R(H) relations. It is noticed that the R(H) 
dependence is not totally symmetric about H=0. This asymmetry has been observed previously in 
organic and inorganic magnetoresistive devices. As shown in Supplementary Fig. 4a and b, the 
asymmetry persists even after averaging over many measurements. On the other hand, the trends 
of the MR calculated for the magnetic field ramping “up” and “down” (black) are similar, as 
shown in Supplementary Fig. 4d. In this work, we define MR as the average of the two values 
measured from the branch when the magnetic field is ramping “up” and from branch when the 
magnetic field is ramping “down”. The differences between the two MR values are taken as the 
systematic uncertainty. Note that the comprehensive estimation of the systematic uncertainty is 
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very difficult. So the way we use here may still underestimate the systematic uncertainty. 
 

Estimation of the total MR measurement uncertainty (error bar) 
As discussed above, the total MR uncertainty are calculated considering both the statistical and 
systematic uncertainties: 

   𝜎!"!#$ = σ!"! + σ!"#" , where σ!"!  and σ!"#"  are the systematic and statistical uncertainty 
respectively. We define  σ!"! =

!"!!!"!
!

. 

For example, in Supplementary Fig. 4d, the total MR measurement uncertainty (VMAX = +0.5V, 
VMR = -0.3V) resulting from four R(H) measurements is  

   𝜎!"!#$ = σ!"! + σ!"#" =
!.!%!!.!%

!
+ 0.6% = 1.25%.  

Here, the magnitudes of σ!"! and σ!"#" are similar, and the error bars 𝜎!"!#$ estimated using this 
method satisfy the Poissonian statistics, which is the case in most measurements. In rare case that 
𝜎!"!#$ is small, we manually enlarge the error bars (roughly 2 times) according to the dispersion 
of the data to satisfy the Poissonian statistics. 

 
Reproducibility of MR loops 

To further demonstrate the robustness of the hysteresis behavior of MR (VMR) profiles, 
Supplementary Fig. 5a and b shows MR loops measured at -0.2V and -1.0V, respectively, after 
three ramping voltages (VMAX[I] = -1.2V, VMAX[II] = +1.2V and VMAX[III] = -1.2V). After a full 
cycle of ramping voltage, the resistance and the MR loops are nearly identical to that measured 
before the cycle (Supplementary Fig. 5c). The hysteretic effect coming from the sample drift 
could be excluded.    

 
 

Supplementary Note 5: Control experiments for dependence of MR on VMAX: 
No dependence of MR on VMAX in a LSMO-OSV control device 

A conventional organic spin valve device without PZT (LSMO/Alq3/Co, or LSMO-OSV) was 
grown as a control device (Supplementary Fig. 6). The MR (VMR) profiles are similar for 
different VMAX. In particular, the shift of the MR (VMR) profile is negligible small. The 
dependence of the shift (∆V) on VMAX is shown in Fig. 2f of the main text. 

 
No MR shift in STO-OSV device 

We also fabricated an organic spin valve LSMO/STO/Alq3/Co (STO-OSV) as a control device in 
which the 5 nm PZT layer is replaced with a 5 nm STO layer. Here the STO layer is a tunneling 
barrier but without dipole moment. Energy level diagrams of STO-OSV and FE-OSV are shown 
in Supplementary Fig. 7a and b, respectively. The R(H) profiles are shown in Supplementary 
Fig. 7c and d. No significant shift of MR(VMR) profile is observed for two different VMAX (0.65V 
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and -0.65V) in Supplementary Fig. 7e. Supplementary Fig. 7f exhibits a surface of atomic 
flatness of STO (5nm) grown on LSMO/STO substrates, which is similar to that of PZT on 
LSMO/STO (Fig. 1b). 
 

Significant dependence of MR on VMAX but no shift in the MR(VMR)  profile in FE-MTJ 
device 

In the main text, we show that for FE-OSV, the MR(VMR) profiles depend strongly on VMAX. 
More specifically, the MR(VMR) profiles appear to be shifted by VMAX. The shift is attributed to 
the change of effective voltage on the Alq3 layer due to the vacuum level shift caused by the 
polarization of the PZT layer. To gain more insight on this mechanism, we fabricated 
ferroelectric magnetic tunnel junctions (LSMO/PZT/Co, or FE-MTJ) as the third control device. 
Co electrodes (area 200 µm*200 µm) are thermally deposited on top of PZT (5 nm)/LSMO (30 
nm) substrates using a shadow mask, followed by an Au capping layer (10 nm). 
Supplementary Fig. 8a shows two MR loops at the same bias voltage (VMR: -0.04V) but with 
two VMAX (+2.0V, -2.0V). Supplementary Fig. 8b to d show that MR(VMR) profile with 
different VMAX. Clear dependence of MR on VMAX is observed, particularly in Supplementary 
Fig. 8d. However, the MR (VMR) profiles show no significant shift for different VMAX. These 
observations confirm the conclusion in Nat. Mater. 11, 289–293 (2012). In addition, it suggests 
that the change of MR by VMAX in the FE-MTJ device is caused by a different mechanism. Note 
that in FE-MTJ, the PZT layer is sandwiched by two conductors (LSMO and Co). The dipole 
moment of the PZT layer is expected to be screened by the two electrodes, generating no vacuum 
level shift, which is consistent with the absence of the MR (VMR) profile shift in the FE-MTJ 
device.  
 

 
 

Supplementary Note 6: MR sign reversal by reversing the polarization of the PZT layer 
As shown in Supplementary Fig. 9a, the MR (VMR) of the FE-OSV device with the as-grown 
PZT layer show a small shift between VMAX = +/-0.5V. The switchability of the polarization of 
the PZT layer is confirmed by hysteretic polarization-voltage loop, shown in Supplementary 
Fig. 9e. The polarization of the PZT layer is reversed by stopping the measurement of the 
hysteretic loop at -5 V. After the reversal of the polarization of the PZT layer, the MR (VMR) 
profiles show dramatic change for different VMAX. Even the sign of MR is changed from negative 
to positive in certain ranges of VMR (Supplementary Fig. 9c). By comparing the MR (VMR) 
profiles and the possible minor loops of the polarization-voltage relation during the measurement 
of the MR (VMR) profiles (Supplementary Fig. 9d to f), a simple correlation between the sign of 
MR and electric polarization can be summarized (Supplementary Fig. 9b): MR is positive if the 
polarization of the PZT layer is below a certain (negative) value. Note that the threshold is not 
zero, suggesting that the mechanism of the sign reversal of the MR has to do with the detailed 
electronic structure of the electrodes. A proposed mechanism based on the electronic structure of 
LSMO is depicted in Fig. 5 of the main text. 
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