37 research outputs found

    Coupled Coincidence Points for Mixed Monotone Random Operators in Partially Ordered Metric Spaces

    Get PDF
    The aim of this work is to prove some coupled random coincidence theorems for a pair of compatible mixed monotone random operators satisfying weak contractive conditions. These results are some random versions and extensions of results of Karapınar et al. (2012). Our results generalize the results of Shatanawi and Mustafa (2012)

    Improved Estimation of the Gross Primary Production of Europe by Considering the Spatial and Temporal Changes in Photosynthetic Capacity from 2001 to 2016

    Get PDF
    The value of leaf photosynthetic capacity (Vcmax) varies with time and space, but state-of-the-art terrestrial biosphere models rarely include such Vcmax variability, hindering the accuracy of carbon cycle estimations on a large scale. In particular, while the European terrestrial ecosystem is particularly sensitive to climate change, current estimates of gross primary production (GPP) in Europe are subject to significant uncertainties (2.5 to 8.7 Pg C yr−1). This study applied a process-based Farquhar GPP model (FGM) to improve GPP estimation by introducing a spatially and temporally explicit Vcmax derived from the satellite-based leaf chlorophyll content (LCC) on two scales: across multiple eddy covariance tower sites and on the regional scale. Across the 19 EuroFLUX sites selected for independent model validation based on 9 plant functional types (PFTs), relative to the biome-specific Vcmax, the inclusion of the LCC-derived Vcmax improved the model estimates of GPP, with the coefficient of determination (R2) increased by 23% and the root mean square error (RMSE) decreased by 25%. Vcmax values are typically parameterized with PFT-specific Vcmax calibrated from flux tower observations or empirical Vcmax based on the TRY database (which includes 723 data points derived from Vcmax field measurements). On the regional scale, compared with GPP, using the LCC-derived Vcmax, the conventional method of fixing Vcmax using the calibrated Vcmax or TRY-based Vcmax overestimated the annual GPP of Europe by 0.5 to 2.9 Pg C yr−1 or 5 to 31% and overestimated the interannually increasing GPP trend by 0.007 to 0.01 Pg C yr−2 or 14 to 20%, respectively. The spatial pattern and interannual change trend of the European GPP estimated by the improved FGM showed general consistency with the existing studies, while our estimates indicated that the European terrestrial ecosystem (including part of Russia) had higher carbon assimilation potential (9.4 Pg C yr−1). Our study highlighted the urgent need to develop spatially and temporally consistent Vcmax products with a high accuracy so as to reduce uncertainties in global carbon modeling and improve our understanding of how terrestrial ecosystems respond to climate change

    Statistically Consistent Inverse Optimal Control for Linear-Quadratic Tracking with Random Time Horizon

    No full text
    The goal of Inverse Optimal Control (IOC) is to identify the underlying objective function based on observed optimal trajectories. It provides a powerful framework to model expert\u27s behavior, and a data-driven way to design an objective function so that the induced optimal control is adapted to a contextual environment. In this paper, we design an IOC algorithm for linear-quadratic tracking problems with random time horizon, and prove the statistical consistency of the algorithm. More specifically, the proposed estimator is the solution to a convex optimization problem, which means that the estimator does not suffer from local minima. This enables the proven statistical consistency to actually be achieved in practice. The algorithm is also verified on simulated data as well as data from a real world experiment, both in the setting of identifying the objective function of human tracking locomotion. The statistical consistency is illustrated on the synthetic data set, and the experimental results on the real data shows that we can get a good prediction on human tracking locomotion based on estimating the objective function. It shows that the theory and the model have a good performance in real practice. Moreover, the identified model can be used as a control target in personalized rehabilitation robot controller design, since the identified objective function describes personal habit and preferences

    Trilateral Smooth Filtering for Hyperspectral Image Feature Extraction

    No full text

    A Data-Driven Learning-Based Continuous-Time Estimation and Simulation Method for Energy Efficiency and Coulombic Efficiency of Lithium Ion Batteries

    No full text
    Lithium ion (Li-ion) batteries work as the basic energy storage components in modern railway systems, hence estimating and improving battery efficiency is a critical issue in optimizing the energy usage strategy. However, it is difficult to estimate the efficiency of lithium ion batteries accurately since it varies continuously under working conditions and is unmeasurable via experiments. This paper offers a learning-based simulation method that employs experimental data to estimate the continuous-time energy efficiency and coulombic efficiency of lithium ion batteries, taking lithium titanate batteries as an example. The state of charge (SOC) regions and discharge current rates are considered as the main variables that may affect the efficiencies. Over eight million empirical datasets are collected during a series of experiments performed to investigate the efficiency variation. A back propagation (BP) neural network efficiency estimation and simulation model is proposed to estimate the continuous-time energy efficiency and coulombic efficiency. The empirical data collected in the experiments are used to train the BP network model, which reveals a test error of 10−4. With the input of continuous SOC regions and discharge currents, continuous-time efficiency can be estimated by the trained BP network model. The estimated and simulated result is proven to be consistent with the experimental results

    Stochastic optimization of a stationary energy storage system for a catenary-free tramline

    No full text
    To realize economical operation of a catenary-free tramline, we propose installing a stationary energy storage system (SESS) to assist the electric grid for trams charging. As the tram operation may not be fully aligned with a predetermined timetable, an economical coordination of the electric grid and the SESS under uncertain charging demands is investigated. To this end, a chance-constrained program is formulated where demanded charging of the tramline is satisfied in a probabilistic sense. The introduced chance-constrained program is translated into a robust and deterministic mixed-integer second-order cone program (MISOCP) by first saturating charging power to a stochastic upper limit and then prolonging charging periods until entire energy is delivered for all charging scenarios that are being investigated. A case study for the Haizhu line in Guangzhou, China, shows that a cost–benefit of 13.70% can be obtained by installing an SESS when charging power is fully delivered for all scenarios, while a 28.47% cost-saving can be achieved when charging power is delivered 99% of the time

    Optimisation of a Catenary-Free Tramline Equipped with Stationary Energy Storage Systems

    No full text
    Catenary-free trams powered by on-board supercapacitor systems require high charging power from tram stations along the line. Since a shared electric grid is suffering from power superimposition when several trams charge at the same time, we propose to install stationary energy storage systems (SESSs) for power supply network to downsize charging equipment and reduce operational cost of the electric grid. To evaluate the trade-off between component cost and operational cost, an optimisation problem, which integrates type selection, sizing, energy management and different installation configurations of the SESSs, is introduced and formulated in terms of an annual cost. Disciplined convex modelling is applied to obtain a computationally tractable solution for a case study on an existing line in China. Results show that the optimal solution may reduce tramline cost by 11.48%
    corecore