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The aim of this work is to prove some coupled random coincidence theorems for a pair of compatible mixed monotone random
operators satisfyingweak contractive conditions.These results are some randomversions and extensions of results of Karapınar et al.
(2012). Our results generalize the results of Shatanawi and Mustafa (2012).

1. Introduction

Random coincidence point theorems are stochastic gener-
alizations of classical coincidence point theorems and play
an important role in the theory of random differential and
integral equations. Randomfixed point theorems for contrac-
tive mapping on complete separable metric space have been
proved by several authors (see [1–8]). Fixed point theorems
for monotone operators in ordered Banach spaces have been
investigated and found various applications. Since then, fixed
point theorems for mixed monotone mappings in partially
ordered metric spaces are of great importance and have been
utilized for matrix equations, ordinary differential equations,
and the existence and uniqueness of solutions for some
boundary value problems (see [9–17]).

Ćirić and Lakshmikantham [18] and Zhu and Xiao [19]
proved some coupled random fixed point and coupled ran-
dom coincidence results in partially ordered complete metric
spaces. Moreover coupled random coincidence results in
partially ordered complete metric spaces were considered in
[20–22]. Following Karapınar et al. [17] and Shatanawi and
Mustafa [21], we improve these results for a pair of compatible
mixed monotone random mappings 𝐹 : Ω × (𝑋 × 𝑋) → 𝑋

and 𝑔 : Ω × 𝑋 → 𝑋, where 𝐹 and 𝑔 satisfy some weak
contractive conditions. Presented results are also referred to
the extensions and improve the corresponding results in [19,
21] and many other authors’ work.

2. Preliminaries

Let (𝑋, ≤) be a partially ordered set. The concept of a mixed
monotone property of the mappings 𝐹 : 𝑋 × 𝑋 → 𝑋 and
𝑔 : 𝑋 → 𝑋 has been introduced by Lakshmikantham and
Ćirić in [16].

Definition 1 (see [16]). Let (𝑋, 𝑑) be a partially ordered set and
𝐹 : 𝑋 × 𝑋 → 𝑋 a mapping. Then the map 𝐹 is said to
have mixed 𝑔-monotone property if 𝐹(𝑥, 𝑦) is monotone 𝑔-
nondecreasing in 𝑥 and is monotone 𝑔-nonincreasing in 𝑦;
that is, for any 𝑥, 𝑦 ∈ 𝑋,

𝑔𝑥
1
≤ 𝑔𝑥
2
implies 𝐹 (𝑥

1
, 𝑦) ≤ 𝐹 (𝑥

2
, 𝑦) ,

𝑔𝑦
1
≤ 𝑔𝑦
2
implies 𝐹 (𝑥, 𝑦

2
) ≤ 𝐹 (𝑥, 𝑦

1
) .

(1)

Definition 2 (see [16]). An element (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is called a
coupled coincidence point of the mapping 𝐹 : 𝑋 × 𝑋 → 𝑋

and 𝑔 : 𝑋 → 𝑋 if 𝐹(𝑥, 𝑦) = 𝑔𝑥 and 𝐹(𝑦, 𝑥) = 𝑔𝑦.

Definition 3 (see [22]). The mappings 𝐹 : 𝑋 × 𝑋 → 𝑋 and
𝑔 : 𝑋 → 𝑋 are said to be compatible if

lim
𝑛→∞

𝑑 (𝑔𝐹 (𝑥
𝑛
, 𝑦
𝑛
) , 𝐹 (𝑔𝑥

𝑛
, 𝑔𝑦
𝑛
)) = 0,

lim
𝑛→∞

𝑑 (𝑔𝐹 (𝑦
𝑛
, 𝑥
𝑛
) , 𝐹 (𝑔𝑦

𝑛
, 𝑔𝑥
𝑛
)) = 0,

(2)
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where {𝑥
𝑛
} and {𝑦

𝑛
} are sequences in 𝑋 such that

lim
𝑛→∞

𝐹(𝑥
𝑛
, 𝑦
𝑛
) = lim

𝑛→∞
𝑔𝑥
𝑛
= 𝑥 and lim

𝑛→∞
𝐹(𝑦
𝑛
,

𝑥
𝑛
) = lim

𝑛→∞
𝑔𝑦
𝑛
= 𝑦 for all 𝑥, 𝑦 ∈ 𝑋 being satisfied.

Theorem 4 (see [17]). Let (𝑋, ≤) be a partially ordered set and
suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a
complete metric space. Let 𝐹 : 𝑋×𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be
two mappings such that 𝐹 has the mixed 𝑔-monotone property
and satisfies

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V))

≤ 𝜑 (max {𝑑 (𝑔𝑥, 𝑔𝑢) , 𝑑 (𝑔𝑦, 𝑔V)})

+ 𝐿min {𝑑 (𝐹 (𝑥, 𝑦) , 𝑔𝑢) , 𝑑 (𝐹 (𝑢, V) , 𝑔𝑥) ,

𝑑 (𝐹 (𝑥, 𝑦) , 𝑔𝑥) , 𝑑 (𝐹 (𝑢, V) , 𝑔𝑢)} ,

(3)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑔𝑥 ≥ 𝑔𝑢 and 𝑔𝑦 ≤ 𝑔V, where 𝜑 ∈ Φ

and𝐿 ≥ 0. Let and𝐹(𝑋×𝑋) ⊆ 𝑔(𝑋),𝐹,𝑔 be continuous and let
𝐹 and 𝑔 be compatible mappings. If there exist 𝑥

0
, 𝑦
0
∈ 𝑋 such

that 𝑔𝑥
0
≤ 𝐹(𝑥

0
, 𝑦
0
) and 𝑔𝑦

0
≥ 𝐹(𝑦

0
, 𝑥
0
), then 𝐹 and 𝑔 have

a coupled coincidence point in𝑋.
Denote Φ as the set of functions 𝜑 : [0,∞] → [0,∞]

satisfying the following:

(i) 𝜑 is continuous,

(ii) 𝜑(𝑡) < 𝑡 for all 𝑡 > 0 and 𝜑(𝑡) = 0 if and only if 𝑡 = 0.

Let (Ω, Σ) be a measurable space with Σ sigma algebra
of subsets of Ω and let (𝑋, 𝑑) be a metric space. A mapping
𝑇 : Ω → 𝑋 is called Σ-measurable if, for any open subset 𝑈
of 𝑋, 𝑇−1(𝑈) = {𝜔 : 𝑇(𝜔) ∈ 𝑈} ∈ Σ. In what follows, when
we speak of measurability, we will mean Σ-measurability. A
mapping 𝑇 : Ω × 𝑋 → 𝑋 is called a random operator if,
for any 𝑥 ∈ 𝑋, 𝑇(⋅, 𝑥) is measurable. A measurable mapping
𝜉 : Ω → 𝑋 is called a random fixed point of a random
function 𝑇 : Ω × 𝑋 → 𝑋, if 𝜉(𝜔) = 𝑇(𝜔, 𝜉(𝜔)), for every
𝜔 ∈ Ω. Ameasurablemapping 𝜉 : Ω → 𝑋 is called a random
coincidence of 𝑇 : Ω × 𝑋 → 𝑋 and 𝑔 : Ω × 𝑋 → 𝑋 if
𝑔(𝜔, 𝜉(𝜔)) = 𝑇(𝜔, 𝜉(𝜔)) for each 𝜔 ∈ Ω.

Definition 5 (see [22]). Let (𝑋, 𝑑) be a separable metric space
and (Ω, Σ) ameasurable space.Then𝐹 : Ω×(𝑋×𝑋) → 𝑋 and
𝑔 : Ω × 𝑋 → 𝑋 are said to be compatible random operators
if

lim
𝑛→∞

𝑑 (𝑔 (𝜔, 𝐹 (𝜔, (𝑥
𝑛
, 𝑦
𝑛
))) ,

𝐹 (𝜔, (𝑔 (𝜔, 𝑥
𝑛
) , 𝑔 (𝜔, 𝑦

𝑛
)))) = 0,

lim
𝑛→∞

𝑑 (𝑔 (𝜔, 𝐹 (𝜔, (𝑦
𝑛
, 𝑥
𝑛
))) ,

𝐹 (𝜔, (𝑔 (𝜔, 𝑦
𝑛
) , 𝑔 (𝜔, 𝑥

𝑛
)))) = 0,

(4)

where {𝑥
𝑛
} and {𝑦

𝑛
} are sequences in 𝑋 such that

lim
𝑛→∞

𝐹(𝜔, (𝑥
𝑛
, 𝑦
𝑛
)) = lim

𝑛→∞
𝑔(𝜔, 𝑥

𝑛
) = 𝑥 and

lim
𝑛→∞

𝐹(𝜔, (𝑦
𝑛
, 𝑥
𝑛
)) = lim

𝑛→∞
𝑔(𝜔, 𝑦

𝑛
) = 𝑦 for all 𝜔 ∈ Ω

and for all 𝑥, 𝑦 ∈ 𝑋 being satisfied.

Theorem 6 (see [21]). Let (𝑋, ≤) be a partially ordered
set, (𝑋, 𝑑) a complete separable metric space, and (Ω, Σ) a
measurable space. Let 𝐹 : Ω × (𝑋 × 𝑋) → 𝑋 and 𝑔 : Ω ×

𝑋 → 𝑋 be mappings such that there are two nonnegative real
numbers 𝛼 and 𝛽 with 𝛼 + 𝛽 < 1 such that

𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝐹 (𝜔, (𝑢, V)))

≤ 𝛼𝑑 (𝑔 (𝜔, 𝑥) , 𝑔 (𝜔, 𝑢)) + 𝛽𝑑 (𝑔 (𝜔, 𝑦) , 𝑔 (𝜔, V)) ,
(5)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑔(𝜔, 𝑥) ≤ 𝑔(𝜔, 𝑢) and 𝑔(𝜔, 𝑦) ≥

𝑔(𝜔, V) for all𝜔 ∈ Ω. Assume that 𝐹 and 𝑔 satisfy the following
conditions:

(1) 𝐹(𝜔, ⋅), 𝑔(𝜔, ⋅) are continuous, for all 𝜔 ∈ Ω,
(2) 𝐹(⋅, V), 𝑔(⋅, 𝑥) are measurable, for all V ∈ 𝑋 × 𝑋 and

𝑥 ∈ 𝑋, respectively,
(3) 𝐹(𝜔 × (𝑋 × 𝑋)) ⊆ 𝑋, for each 𝜔 ∈ Ω,
(4) 𝑔 is continuous and commutes with 𝐹 and also suppose

that either

(a) 𝐹 is continuous or
(b) 𝑋 has the following properties:

(i) if a nondecreasing sequence 𝑥
𝑛
→ 𝑥, then

𝑥
𝑛
≤ 𝑥, for all 𝑛,

(ii) if a nonincreasing sequence 𝑥
𝑛

→ 𝑥, then
𝑥 ≤ 𝑥

𝑛
, for all 𝑛.

If there exist measurable mappings 𝜂
0
, 𝜃
0
∈ 𝑋 such that

𝑔(𝜔, 𝜂
0
(𝜔)) ≤ 𝐹(𝜔, (𝜂

0
(𝜔), 𝜃
0
(𝜔))) and 𝐹(𝜔, (𝜃

0
(𝜔), 𝜂
0
(𝜔))) ≤

𝑔(𝜔, 𝜃
0
(𝜔)), then there are measurable mappings 𝜂, 𝜃 :

Ω → 𝑋 such that 𝐹(𝜔, (𝜂(𝜔), 𝜃(𝜔))) = 𝑔(𝜔, 𝜂(𝜔)) and
𝐹(𝜔, (𝜃(𝜔), 𝜂(𝜔))) = 𝑔(𝜔, 𝜃(𝜔)) for all 𝜔 ∈ Ω; that is, 𝐹 and 𝑔
have a coupled random coincidence.

Now, we state our main results as follows.

3. Main Results

In this section, we study coupled random coincidence and
coupled random fixed point theorems for a pair of random
mappings 𝐹 : Ω × (𝑋 × 𝑋) → 𝑋 and 𝑔 : Ω × 𝑋 → 𝑋.
Thenwewill prove some results for randommixedmonotone
mappings, which are the extensions of corresponding results
for deterministic mixed monotone mappings of Karapınar
et al. [17].

Theorem 7. Let (𝑋, ≤) be a partially ordered set, (𝑋, 𝑑) a
complete separable metric space, (Ω, Σ) a measurable space,
and 𝐹 : Ω × (𝑋 × 𝑋) → 𝑋 and 𝑔 : Ω × 𝑋 → 𝑋 mappings
such that

𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝐹 (𝜔, (𝑢, V)))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝑥) , 𝑔 (𝜔, 𝑢)) , 𝑑 (𝑔 (𝜔, 𝑦) , 𝑔 (𝜔, V))}

+ 𝐿min {𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝑔 (𝜔, 𝑢)) ,

𝑑 (𝐹 (𝜔, (𝑢, V)) , 𝑔 (𝜔, 𝑥)) ,
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𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝑔 (𝜔, 𝑥)) ,

𝑑 (𝐹 (𝜔, (𝑢, V)) , 𝑔 (𝜔, 𝑢))} ,
(6)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑔(𝜔, 𝑥) ≤ 𝑔(𝜔, 𝑢) and 𝑔(𝜔, 𝑦) ≥

𝑔(𝜔, V) for all 𝜔 ∈ Ω, where 𝜑 ∈ Φ and 𝐿 ≥ 0. Assume that 𝐹
and 𝑔 satisfy the following conditions:

(1) 𝑔(𝜔, ⋅) are continuous, for all 𝜔 ∈ Ω,

(2) 𝐹(⋅, V), 𝑔(⋅, 𝑥) are measurable, for all V ∈ 𝑋 × 𝑋 and
𝑥 ∈ 𝑋, respectively,

(3) 𝐹(𝜔 × (𝑋 × 𝑋)) ⊆ 𝑔(𝜔 × 𝑋), for each 𝜔 ∈ Ω,

(4) 𝑔 is continuous and commutes with 𝐹 and also suppose
that either

(a) 𝐹 is continuous or
(b) 𝑋 has the following properties:

(i) if a nondecreasing sequence 𝑥
𝑛
→ 𝑥, then

𝑔𝑥
𝑛
≤ 𝑔𝑥, for all 𝑛,

(ii) if a nonincreasing sequence 𝑦
𝑛

→ 𝑦, then
𝑔𝑦 ≤ 𝑔𝑦

𝑛
, for all 𝑛.

If there exist measurable mappings 𝜂
0
, 𝜃
0
∈ 𝑋 such that

𝑔(𝜔, 𝜂
0
(𝜔)) ≤ 𝐹(𝜔, (𝜂

0
(𝜔), 𝜃
0
(𝜔))) and 𝐹(𝜔, (𝜃

0
(𝜔), 𝜂
0
(𝜔))) ≤

𝑔(𝜔, 𝜃
0
(𝜔)), then there are measurable mappings 𝜂, 𝜃 :

Ω → 𝑋 such that 𝐹(𝜔, (𝜂(𝜔), 𝜃(𝜔))) = 𝑔(𝜔, 𝜂(𝜔)) and
𝐹(𝜔, (𝜃(𝜔), 𝜂(𝜔))) = 𝑔(𝜔, 𝜃(𝜔)), for all 𝜔 ∈ Ω; that is, 𝐹 and 𝑔
have a coupled random coincidence.

Proof. Let Θ = {𝜂 : Ω → 𝑋} be a family of measurable
mappings. Define a function ℎ : Ω × 𝑋 → R+ as ℎ(𝜔, 𝑥) =
𝑑(𝑥, 𝑔(𝜔, 𝑥)). Since 𝑥 → 𝑔(𝜔, 𝑥) is continuous, for all 𝜔 ∈

Ω, we conclude that ℎ(𝜔, ⋅) is continuous, for all 𝜔 ∈ Ω.
Also, since 𝜔 → 𝑔(𝜔, 𝑥) is measurable, for all 𝑥 ∈ 𝑋, we
conclude that ℎ(⋅, 𝑥) ismeasurable, for all𝑥 ∈ 𝑋 (see [23, page
868]). Thus, ℎ(𝜔, 𝑥) is the Caratheodory function. Thus, if
𝜂 : Ω → 𝑋 is measurable mapping, then 𝜔 → ℎ(𝜔, 𝜂(𝜔)) is
also measurable (see [24]). Also, for each 𝜃 ∈ Θ, the function
𝜂 : Ω → 𝑋 defined by 𝜂(𝜔) = 𝑔(𝜔, 𝜃(𝜔)) is measurable; that
is, 𝜂 ∈ Θ.

Now we are going to construct two sequences of mea-
surable mappings {𝜉

𝑛
} and {𝜂

𝑛
} in Θ and two sequences

{𝑔(𝜔, 𝜉
𝑛
(𝜔))} and {𝑔(𝜔, 𝜂

𝑛
(𝜔))} in 𝑋 as follows. Let 𝜉

0
, 𝜂
0
∈

Θ be such that 𝑔(𝜔, 𝜉
0
(𝜔)) ≤ 𝐹(𝜔, (𝜉

0
(𝜔), 𝜂
0
(𝜔))) and

𝑔(𝜔, 𝜂
0
(𝜔)) ≥ 𝐹(𝜔, (𝜂

0
(𝜔), 𝜉
0
(𝜔))), for all 𝜔 ∈ Ω. Since

𝐹(𝜔, (𝜉
0
(𝜔), 𝜂
0
(𝜔))) ∈ 𝐹(𝜔×(𝑋×𝑋)) ⊆ 𝑔(𝜔×𝑋), by a sort of

Filippov measurable implicit function theorem (see [25, 26]),
there is 𝜉

1
∈ Θ such that 𝑔(𝜔, 𝜉

1
(𝜔)) = 𝐹(𝜔, (𝜉

0
(𝜔), 𝜂
0
(𝜔))).

Similarly, as 𝐹(𝜔, (𝜂
0
(𝜔), 𝜉
0
(𝜔))) ∈ 𝑔(𝜔 × 𝑋), there is

𝜂
1
∈ Θ such that 𝑔(𝜔, 𝜂

1
(𝜔)) = 𝐹(𝜔, (𝜂

0
(𝜔), 𝜉
0
(𝜔))). Thus

𝐹(𝜔, (𝜉
0
(𝜔), 𝜂
0
(𝜔))) and 𝐹(𝜔, (𝜂

0
(𝜔), 𝜉
0
(𝜔))) are well defined

now. Again, since

𝐹 (𝜔, (𝜉
1
(𝜔) , 𝜂

1
(𝜔))) , 𝐹 (𝜔, (𝜂

1
(𝜔) , 𝜉

1
(𝜔))) ∈ 𝑔 (𝜔 × 𝑋) ,

(7)

there are 𝜉
2
, 𝜂
2
∈ Θ such that

𝑔 (𝜔, 𝜉
2
(𝜔)) = 𝐹 (𝜔, (𝜉

1
(𝜔) , 𝜂

1
(𝜔))) ,

𝑔 (𝜔, 𝜂
2
(𝜔)) = 𝐹 (𝜔, (𝜂

1
(𝜔) , 𝜉

1
(𝜔))) .

(8)

Continuing this process we can construct sequences {𝜉
𝑛
(𝜔)}

and {𝜂
𝑛
(𝜔)} in𝑋 such that

𝑔 (𝜔, 𝜉
𝑛+1

(𝜔)) = 𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))) ,

𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)) = 𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔))) ,

(9)

for all 𝑛 ∈ N. Now, we use mathematical induction to prove
that

𝑔 (𝜔, 𝜉
𝑛
(𝜔)) ≤ 𝑔 (𝜔, 𝜉

𝑛+1
(𝜔)) ,

𝑔 (𝜔, 𝜂
𝑛
(𝜔)) ≥ 𝑔 (𝜔, 𝜂

𝑛+1
(𝜔)) ,

(10)

for all 𝑛 ∈ N. Let 𝑛 = 0, and by assumption we have

𝑔 (𝜔, 𝜉
0
(𝜔)) ≤ 𝐹 (𝜔, (𝜉

0
(𝜔) , 𝜂

0
(𝜔))) ,

𝑔 (𝜔, 𝜂
0
(𝜔)) ≥ 𝐹 (𝜔, (𝜂

0
(𝜔) , 𝜉

0
(𝜔))) .

(11)

Since

𝑔 (𝜔, 𝜉
1
(𝜔)) = 𝐹 (𝜔, (𝜉

0
(𝜔) , 𝜂

0
(𝜔))) ,

𝑔 (𝜔, 𝜂
1
(𝜔)) = 𝐹 (𝜔, (𝜂

0
(𝜔) , 𝜉

0
(𝜔))) ,

(12)

we have

𝑔 (𝜔, 𝜉
0
(𝜔)) ≤ 𝑔 (𝜔, 𝜉

1
(𝜔)) ,

𝑔 (𝜔, 𝜂
0
(𝜔)) ≥ 𝑔 (𝜔, 𝜂

1
(𝜔)) .

(13)

Therefore, (10) holds for 𝑛 = 0. Suppose (10) holds for some
fixed number 𝑛 ≥ 0. Then, since

𝑔 (𝜔, 𝜉
𝑛
(𝜔)) ≤ 𝑔 (𝜔, 𝜉

𝑛+1
(𝜔)) ,

𝑔 (𝜔, 𝜂
𝑛
(𝜔)) ≥ 𝑔 (𝜔, 𝜂

𝑛+1
(𝜔))

(14)

and 𝐹 is monotone 𝑔-nondecreasing in its first argument, we
have

𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))) ≤ 𝐹 (𝜔, (𝜉

𝑛+1
(𝜔) , 𝜂

𝑛
(𝜔))) ,

𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔))) ≥ 𝐹 (𝜔, (𝜂

𝑛+1
(𝜔) , 𝜉

𝑛
(𝜔))) .

(15)

Also, since 𝑔(𝜔, 𝜉
𝑛
(𝜔)) ≤ 𝑔(𝜔, 𝜉

𝑛+1
(𝜔)) and 𝑔(𝜔, 𝜂

𝑛
(𝜔)) ≥

𝑔(𝜔, 𝜂
𝑛+1

(𝜔)). and 𝐹 is monotone 𝑔-nonincreasing in its
second argument, we have

𝐹 (𝜔, (𝜉
𝑛+1

(𝜔) , 𝜂
𝑛+1

(𝜔))) ≥ 𝐹 (𝜔, (𝜉
𝑛+1

(𝜔) , 𝜂
𝑛
(𝜔)))

𝐹 (𝜔, (𝜂
𝑛+1

(𝜔) , 𝜉
𝑛
(𝜔))) ≥ 𝐹 (𝜔, (𝜂

𝑛+1
(𝜔) , 𝜉

𝑛+1
(𝜔))) .

(16)

Thus, from (9), we get

𝑔 (𝜔, 𝜉
𝑛+1

(𝜔)) ≤ 𝑔 (𝜔, 𝜉
𝑛+2

(𝜔)) ,

𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)) ≥ 𝑔 (𝜔, 𝜂
𝑛+2

(𝜔)) .

(17)
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Thus, by mathematical induction, we conclude that (10)
holds for all 𝑛 ∈ N. Now, we prove that {𝑔(𝜔, 𝜉

𝑛
(𝜔))} and

{𝑔(𝜔, 𝜂
𝑛
(𝜔))} are Cauchy sequences. Let 𝑛 ∈ N, and, by (6)–

(10), we have

𝑑 (𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))) , 𝐹 (𝜔, (𝜉

𝑛−1
(𝜔) , 𝜂

𝑛−1
(𝜔))))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔)))})

+ 𝐿min {𝑑 (𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜉
𝑛−1

(𝜔) , 𝜂
𝑛−1

(𝜔))) , 𝑔 (𝜔, 𝜉
𝑛
(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))) , 𝑔 (𝜔, 𝜉

𝑛
(𝜔))) ,

𝑑 (𝑓 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔)))} ,

(18)

which implies that

𝑑 (𝑔 (𝜔, 𝜉
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛
(𝜔)))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔)))}) .

(19)

Similarly, we have

𝑑 (𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔))) , 𝐹 (𝜔, (𝜂

𝑛−1
(𝜔) , 𝜉

𝑛−1
(𝜔))))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔)))})

+ 𝐿min {𝑑 (𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔))) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜂
𝑛−1

(𝜔) , 𝜉
𝑛−1

(𝜔))) , 𝑔 (𝜔, 𝜂
𝑛
(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔))) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜂
𝑛−1

(𝜔) , 𝜉
𝑛−1

(𝜔))) , 𝑔 (𝜔, 𝜂
𝑛−1

(𝜔)))} ,

(20)

which implies that

𝑑 (𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛
(𝜔)))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔)))}) .

(21)

From (19) and (21), we get that

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛
(𝜔)))}

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔)))}) .

(22)

Since 𝜑(𝑡) < 𝑡, for all 𝑡 > 0, by (22), we have

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛
(𝜔)))}

< max {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔)))} .

(23)

Set 𝑑
𝑛
= max{𝑑(𝑔(𝜔, 𝜉

𝑛+1
(𝜔)), 𝑔(𝜔, 𝜉

𝑛
(𝜔))), 𝑑(𝑔(𝜔, 𝜂

𝑛+1
(𝜔)),

𝑔(𝜔, 𝜂
𝑛
(𝜔)))}, then {𝑑

𝑛
} is a nonincreasing sequence of

positive real numbers. Thus, there is 𝑑 ≥ 0 such that

lim
𝑛→∞

𝑑
𝑛
= 𝑑. (24)

Suppose that 𝑑 > 0; letting 𝑛 → ∞ in two sides of (22)
and using the properties of 𝜑, we have

𝑑 = lim
𝑛→∞

𝑑
𝑛

≤ lim
𝑛→∞

𝜑 (max {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛−1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛−1
(𝜔)))})

≤ 𝜑 (𝑑) < 𝑑,

(25)

which is a contradiction. Hence 𝑑 = 0; that is,

𝑑 = lim
𝑛→∞

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛
(𝜔)))} = 0.

(26)

We will show that {𝑔(𝜔, 𝜂
𝑛
(𝜔))} and {𝑔(𝜔, 𝜉

𝑛
(𝜔))} are Cauchy

sequences. Suppose, to the contrary, that at least one of
{𝑔(𝜔, 𝜂

𝑛
(𝜔))} or {𝑔(𝜔, 𝜉

𝑛
(𝜔))} is not a Cauchy sequence.

This means that there exists an 𝜀 > 0 for which we
can find subsequences {𝑔(𝜔, 𝜂

𝑛(𝑘)
(𝜔))} of {𝑔(𝜔, 𝜂

𝑛
(𝜔))} and

{𝑔(𝜔, 𝜉
𝑛(𝑘)

(𝜔))} of {𝑔(𝜔, 𝜉
𝑛
(𝜔))} with 𝑛(𝑘) > 𝑚(𝑘) ≥ 𝑘 (𝑘 =

1, 2, . . .) such that

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))} ≥ 𝜀.

(27)

Further, corresponding to 𝑚(𝑘), we can choose 𝑛(𝑘) in such
a way that it is the smallest integer with 𝑛(𝑘) > 𝑚(𝑘) ≥ 𝑘 and
satisfies (27). Then,

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))} < 𝜀.

(28)
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Using the triangle inequality and (28), we have

𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔))) + 𝜀,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔))

+ 𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔))) + 𝜀.

(29)

By (27) and (29), we obtain

𝜀 ≤ max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))}

≤ max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)))} + 𝜀.

(30)

Letting 𝑘 → ∞, in the inequalities above, we get

lim
𝑘→∞

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))} = 𝜀.

(31)

By the triangle inequalities, we have

𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔))) .

(32)

By the above inequalities and (27), we have

𝜀 ≤ max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))}

≤ max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)))}

+max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) ,

𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)) 𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) ,

𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))}

+max {𝑑 (𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))} .

(33)

Again, by the triangle inequality, we obtain

𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) + 𝜀,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))

≤ 𝑑 (𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔))) + 𝜀.

(34)

Therefore,

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))}

≤ max {𝑑 (𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))} + 𝜀.

(35)

Taking 𝑘 → ∞ in (33) and (35), we have

lim
𝑛→∞

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))} = 𝜀.

(36)
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Since 𝑛(𝑘) > 𝑚(𝑘), 𝑔(𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) ≥ 𝑔(𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)) and
𝑔(𝜔, 𝜂

𝑛(𝑘)−1
(𝜔)) ≤ 𝑔(𝜔, 𝜂

𝑚(𝑘)−1
(𝜔)). Then, from (6)–(10), we

get

𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)))

= 𝑑 (𝐹 (𝜔, (𝜉
𝑛(𝑘)−1

(𝜔) , 𝜂
𝑛(𝑘)−1

(𝜔))) ,

𝐹 (𝜔, (𝜉
𝑚(𝑘)−1

(𝜔) , 𝜂
𝑚(𝑘)−1

(𝜔))))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))})

+ 𝐿min {𝑑 (𝐹 (𝜔, (𝜉
𝑛(𝑘)−1

(𝜔) , 𝜂
𝑛(𝑘)−1

(𝜔))) ,

𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜉
𝑚(𝑘)−1

(𝜔) , 𝜂
𝑚(𝑘)−1

(𝜔))) ,

𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜉
𝑛(𝑘)−1

(𝜔) , 𝜂
𝑛(𝑘)−1

(𝜔))) ,

𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔))) ,

𝑑 (𝐹 (𝜔, (𝜉
𝑚(𝑘)−1

(𝜔) , 𝜂
𝑚(𝑘)−1

(𝜔))) ,

𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)))}

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))})

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔)))} .

(37)

Similarly,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))})

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)))} .

(38)

From (37) and (38), we arrive at

max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)))}

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔)))})

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝜉
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜉
𝑛(𝑘)−1

(𝜔)))}

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝜂
𝑚(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑚(𝑘)−1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛(𝑘)

(𝜔)) , 𝑔 (𝜔, 𝜂
𝑛(𝑘)−1

(𝜔)))} .

(39)

Letting 𝑛 → ∞ in the above inequality and using (26), (27),
and the properties of 𝜑, we have

𝜀 ≤ 𝜑 (𝜀) + 2𝐿min {0, 0} < 𝜀, (40)

which is a contradiction. This means that {𝑔(𝜔, 𝜉
𝑛
(𝜔))} and

{𝑔(𝜔, 𝜂
𝑛
(𝜔))} are Cauchy sequences.

Since 𝑋 is complete, for all 𝜔 ∈ Ω, there exist the func-
tions 𝜁(𝜔) and 𝜃(𝜔) such that

lim
𝑛→∞

𝑔 (𝜔, 𝜉
𝑛
(𝜔)) = 𝜁 (𝜔) , lim

𝑛→∞
𝑔 (𝜔, 𝜂

𝑛
(𝜔)) = 𝜃 (𝜔) .

(41)

Thus,

lim
𝑛→∞

𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))) = lim

𝑛→∞
𝑔 (𝜔, 𝜉

𝑛
(𝜔)) = 𝜁 (𝜔) ,

lim
𝑛→∞

𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔))) = lim

𝑛→∞
𝑔 (𝜔, 𝜂

𝑛
(𝜔)) = 𝜃 (𝜔) .

(42)

Since 𝐹 and 𝑔 are compatible mappings, we have

lim
𝑛→∞

𝑑 (𝑔 (𝜔, 𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔)))) ,

𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔))))) = 0,

lim
𝑛→∞

𝑑 (𝑔 (𝜔, 𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔)))) ,

𝐹 (𝜔, (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛
(𝜔))))) = 0.

(43)

Suppose at first that assumption (a) holds. Taking the
limit as 𝑛 → ∞ in the following inequalities

𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔)))))

≤ 𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝑔 (𝜔, 𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔)))))

+ 𝑑 (𝑔 (𝜔, 𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔)))) ,

𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔)))))

(44)

and using (9) and the continuity of 𝐹, 𝑔, we get

𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔)))) = 𝜃. (45)

This implies𝑔(𝜔, 𝜁(𝜔)) = 𝐹(𝜔, (𝜁(𝜔), 𝜃(𝜔))). Similarly, we can
show that𝑔(𝜔, 𝜃(𝜔)) = 𝐹(𝜔, (𝜃(𝜔), 𝜁(𝜔))) for each𝜔 ∈ Ω.The
proof is complete.
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Suppose now that (b) holds. From (9), we have

lim
𝑛→∞

𝐹 (𝜔, 𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔)))

= lim
𝑛→∞

𝑔 (𝜔, 𝐹 (𝜔, (𝜉
𝑛
(𝜔) , 𝜂

𝑛
(𝜔))))

= lim
𝑛→∞

𝑔 (𝜔, 𝑔 (𝜔, 𝜉
𝑛+1

(𝜔)))

= 𝑔 (𝜔, 𝜁 (𝜔)) ,

(46)

lim
𝑛→∞

𝐹 (𝜔, 𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉

𝑛
(𝜔)))

= lim
𝑛→∞

𝑔 (𝜔, 𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔))))

= lim
𝑛→∞

𝑔 (𝜔, 𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)))

= 𝑔 (𝜔, 𝜃 (𝜔)) .

(47)

Since 𝑔(𝜔, 𝑔(𝜔, 𝜉
𝑛
(𝜔))) ≤ 𝑔(𝜔, 𝜁(𝜔)) and 𝑔(𝜔, 𝑔(𝜔, 𝜂

𝑛
(𝜔))) ≥

𝑔(𝜔, 𝜃(𝜔)), we have

𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔))))

≤ 𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔)))))

+ 𝑑 (𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔)))) ,

𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔))) )

≤ 𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔)))))

+ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝑔 (𝜔, 𝜉
𝑛
(𝜔))) , 𝑔 (𝜔, 𝜁 (𝜔))) ,

𝑑 (𝑔 (𝜔, 𝑔 (𝜔, 𝜂
𝑛
(𝜔))) , 𝑔 (𝜔, 𝜃 (𝜔)))})

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝑔 (𝜔, 𝜉
𝑛
(𝜔))) , 𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔)))) ,

𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) ,

𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔))))) ,

𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔)))) ,

𝑑 (𝑔 (𝜔, 𝑔 (𝜔, 𝜉
𝑛
(𝜔))) ,

𝐹 (𝜔, (𝑔 (𝜔, 𝜉
𝑛
(𝜔) , 𝑔 (𝜔, 𝜂

𝑛
(𝜔)))))} .

(48)

Taking 𝑛 → ∞ in the above inequality and using (46) and
the properties of 𝜑, we have

𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔))))

≤ 𝜑 (max {0, 0})

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝜁 (𝜔)) , 𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔)))) , 0} = 0.

(49)

Hence 𝑔(𝜔, 𝜁(𝜔)) = 𝐹(𝜔, (𝜁(𝜔), 𝜃(𝜔))).
Similarly, one can show that 𝑔(𝜔, 𝜃(𝜔)) = 𝐹(𝜔, (𝜃(𝜔),

𝜁(𝜔))).
The proof is complete.

Remark 8. Taking 𝐿 = 0, for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋, 𝛼, 𝛽 ≥ 0, and
𝛼 + 𝛽 < 1, we have

𝛼𝑑 (𝑔 (𝑤, 𝑥) , 𝑔 (𝑤, 𝑢)) + 𝛽𝑑 (𝑔 (𝑤, 𝑦) , 𝑔 (𝑤, V))

≤ (𝛼 + 𝛽)max {𝑔 (𝑤, 𝑥) , 𝑔 (𝑤, 𝑢) , 𝑔 (𝑤, 𝑦) , 𝑔 (𝑤, V)}

= 𝜑 (max {𝑔 (𝑤, 𝑥) , 𝑔 (𝑤, 𝑢) , 𝑔 (𝑤, 𝑦) , 𝑔 (𝑤, V)} ) ,
(50)

where𝜑(𝑡) = (𝛼+𝛽)𝑡 (𝑡 ≥ 0). Obviously,𝜑(𝑡) ∈ Φ. Moreover,
the conditions that

(𝑎
1
) if a nondecreasing sequence 𝑥

𝑛
→ 𝑥, then 𝑔𝑥

𝑛
≤ 𝑔𝑥,

for all 𝑛,
(𝑏
1
) if a nonincreasing sequence 𝑦

𝑛
→ 𝑦, then 𝑔𝑦 ≤ 𝑔𝑦

𝑛
,

for all 𝑛, are weaker than the conditions that 𝑔 is
monotone mapping and

(𝑎
2
) if a nondecreasing sequence 𝑥

𝑛
→ 𝑥, then 𝑥

𝑛
≤ 𝑥,

for all 𝑛,
(𝑏
2
) if a nonincreasing sequence 𝑦

𝑛
→ 𝑦, then 𝑦 ≤ 𝑦

𝑛

for all 𝑛. Therefore,Theorem 7 generalizesTheorem 6
and [18, Theorem 2.2] and the following corollary is
obtained.

Corollary 9. Let (𝑋, ≤) be a partially ordered set, (𝑋, 𝑑) a
complete separable metric space, (Ω, Σ) a measurable space,
and𝐹 : Ω×(𝑋×𝑋) → 𝑋 and 𝑔 : Ω×𝑋 → 𝑋mappings such
that

(i) 𝑔(𝜔, ⋅) is continuous, for all 𝜔 ∈ Ω,
(ii) 𝐹(⋅, V), 𝑔(⋅, 𝑥) are measurable for all V ∈ 𝑋 × 𝑋 and

𝑥 ∈ 𝑋, respectively,
(iii) 𝐹(𝜔, ⋅) has the mixed 𝑔(𝜔, ⋅)-monotone property for

each 𝜔 ∈ Ω and

𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝐹 (𝜔, (𝑢, V)))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝑥) , 𝑔 (𝜔, 𝑢)) , 𝑑 (𝑔 (𝜔, 𝑦) , 𝑔 (𝜔, V))})

+ 𝐿min {𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝑔 (𝜔, 𝑢)) ,

𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝑔 (𝜔, 𝑥)) ,

𝑑 (𝐹 (𝜔, (𝑢, V)) , 𝑔 (𝜔, 𝑥)) ,

𝑑 (𝐹 (𝜔, (𝑢, V)) , 𝑔 (𝜔, 𝑢))} ,
(51)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑔(𝜔, 𝑥) ≤ 𝑔(𝜔, 𝑢) and 𝑔(𝜔, 𝑦) ≥

𝑔(𝜔, V) for all 𝜔 ∈ Ω, where 𝜑 ∈ Φ and 𝐿 ≥ 0. Suppose that
𝐹(𝜔×(𝑋×𝑋)) ⊆ 𝑔(𝜔×𝑋) for each𝜔 ∈ Ω,𝑔 ismonotone, and𝐹
and 𝑔 are compatible random operators. Also suppose that 𝑋
has the following property:

(a) if a nondecreasing sequence 𝑥
𝑛
→ 𝑥, then 𝑥

𝑛
≤ 𝑥, for

all 𝑛,
(b) if a nonincreasing sequence 𝑦

𝑛
→ 𝑦, then 𝑦 ≤ 𝑦

𝑛
, for

all 𝑛.
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If there exist measurable mappings 𝜉
0
, 𝜂
0
: Ω → 𝑋 such

that

𝑔 (𝜔, 𝜉
0
(𝜔)) ≤ 𝐹 (𝜔, (𝜉

0
(𝜔) , 𝜂

0
(𝜔))) ,

𝐹 (𝜔, (𝜂
0
(𝜔) , 𝜉

0
(𝜔))) ≤ 𝑔 (𝜔, 𝜂

0
(𝜔)) ,

(52)

then there are measurable mappings 𝜁, 𝜃 : Ω → 𝑋 such that

𝐹 (𝜔, (𝜁 (𝜔) , 𝜃 (𝜔))) = 𝑔 (𝜔, 𝜁 (𝜔)) ,

𝐹 (𝜔, (𝜃 (𝜔) , 𝜁 (𝜔))) = 𝑔 (𝜔, 𝜃 (𝜔))

(53)

for all 𝜔 ∈ Ω; that is, 𝐹 and 𝑔 have a coupled random
coincidence.

Remark 10. Comparing with [21, Theorem 2.6], we find that
the monotone of 𝑔 is essential. Also the condition that 𝑋 =

𝑔(𝜔 × 𝑋) is unnecessary and the proof of case (2) in [21,
Theorem 2.6] was irrational. So our Corollary 9 generalizes
and improves [21, Theorem 2.6].

Theorem 11. Let (𝑋, ≤) be a partially ordered set, (𝑋, 𝑑) a
separable metric space, (Ω, Σ) a measurable space, and 𝐹 : Ω×

(𝑋 × 𝑋) → 𝑋 and 𝑔 : Ω × 𝑋 → 𝑋mappings such that

(i) 𝐹(⋅, V), 𝑔(⋅, 𝑥) are measurable, for all V ∈ 𝑋 × 𝑋 and
𝑥 ∈ 𝑋, respectively;

(ii) 𝐹(𝜔, ⋅) has the mixed 𝑔(𝜔, ⋅)-monotone property for
each 𝜔 ∈ Ω and

𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝐹 (𝜔, (𝑢, V)))

≤ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝑥) , 𝑔 (𝜔, 𝑢)) , 𝑑 (𝑔 (𝜔, 𝑦) , 𝑔 (𝜔, V))})

+ 𝐿min {𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝑔 (𝜔, 𝑢)) ,

𝑑 (𝐹 (𝜔, (𝑢, V)) , 𝑔 (𝜔, 𝑥)) ,

𝑑 (𝐹 (𝜔, (𝑥, 𝑦)) , 𝑔 (𝜔, 𝑥)) ,

𝑑 (𝐹 (𝜔, (𝑢, V)) , 𝑔 (𝜔, 𝑢))} ,
(54)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 with 𝑔(𝜔, 𝑥) ≤ 𝑔(𝜔, 𝑢) and 𝑔(𝜔, 𝑦) ≥

𝑔(𝜔, V) for all 𝜔 ∈ Ω, where 𝜑 ∈ Φ and 𝐿 ≥ 0. Suppose that
𝐹(𝜔×(𝑋×𝑋)) ⊆ 𝑔(𝜔×𝑋) and𝑔(𝜔×𝑋) is complete subspace of
𝑋 for each 𝜔 ∈ Ω. Also suppose that 𝑋 has the following
property:

(a) if a nondecreasing sequence 𝑥
𝑛
→ 𝑥, then 𝑥

𝑛
≤ 𝑥, for

all 𝑛,
(b) if a nonincreasing sequence 𝑦

𝑛
→ 𝑦, then 𝑦 ≤ 𝑦

𝑛
, for

all 𝑛.

If there exist measurable mappings 𝜉
0
, 𝜂
0
: Ω → 𝑋 such

that

𝑔 (𝜔, 𝜉
0
(𝜔)) ≤ 𝐹 (𝜔, (𝜉

0
(𝜔) , 𝜂

0
(𝜔))) ,

𝐹 (𝜔, (𝜂
0
(𝜔) , 𝜉

0
(𝜔))) ≤ 𝑔 (𝜔, 𝜂

0
(𝜔)) ,

(55)

then there are measurable mappings 𝜉, 𝜃 : Ω → 𝑋 such that

𝐹 (𝜔, (𝜉 (𝜔) , 𝜃 (𝜔))) = 𝑔 (𝜔, 𝜉 (𝜔)) ,

𝐹 (𝜔, (𝜃 (𝜔) , 𝜉 (𝜔))) = 𝑔 (𝜔, 𝜃 (𝜔)) ,

(56)

for all 𝜔 ∈ Ω; that is, 𝐹 and 𝑔 have a coupled random coinci-
dence.

Proof. Construct two sequences {𝜉
𝑛
(𝜔)} and {𝜂

𝑛
(𝜔)} as

in Theorem 7. According to the proof of Theorem 7,
{𝑔(𝜔, 𝜉

𝑛
(𝜔))} and {𝑔(𝜔, 𝜂

𝑛
(𝜔))} are Cauchy sequences. Since

𝑔(𝜔 × 𝑋) is complete, there exist 𝜉(𝜔), 𝜃(𝜔) ∈ Θ such that

lim
𝑛→∞

𝑔 (𝜔, 𝜉
𝑛
(𝜔)) = 𝑔 (𝜔, 𝜉 (𝜔)) ,

lim
𝑛→∞

𝑔 (𝜔, 𝜂
𝑛
(𝜔)) = 𝑔 (𝜔, 𝜃 (𝜔)) .

(57)

Since {𝑔(𝜔, 𝜉
𝑛
(𝜔))} is nondecreasing sequence and

𝑔(𝜔, 𝜉
𝑛
(𝜔)) → 𝑔(𝜔, 𝜉(𝜔)) and {𝑔(𝜔, 𝜂

𝑛
(𝜔))} is nonincreasing

sequence and 𝑔(𝜔, 𝜂
𝑛
(𝜔)) → 𝑔(𝜔, 𝜃(𝜔)), by the assumption,

we have 𝑔(𝜔, 𝜉
𝑛
(𝜔)) ≤ 𝑔(𝜔, 𝜉(𝜔)) and 𝑔(𝜔, 𝜂

𝑛
(𝜔)) ≥

𝑔(𝜔, 𝜃(𝜔)) such that

𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝐹 (𝜔, (𝜃 (𝜔) , 𝜉 (𝜔))))

≤ 𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)))

+ 𝑑 (𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)) , 𝐹 (𝜔, (𝜃 (𝜔) , 𝜉 (𝜔))))

≤ 𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)))

+ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜃 (𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉 (𝜔)))})

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝐹 (𝜔, (𝜃 (𝜔) , 𝜉 (𝜔)))) ,

𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝐹 (𝜔, (𝜂
𝑛
(𝜔) , 𝜉

𝑛
(𝜔)))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝐹 (𝜔, (𝜂

𝑛
(𝜔) , 𝜉

𝑛
(𝜔)))) ,

𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝐹 (𝜔, (𝜉 (𝜔) , 𝜃 (𝜔))))}

= 𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝑔 (𝜔, 𝜂
𝑛+1

(𝜔)))

+ 𝜑 (max {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜃 (𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜉
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜉 (𝜔)))})

+ 𝐿min {𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝐹 (𝜔, (𝜃 (𝜔) , 𝜉 (𝜔)))) ,

𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝑔 (𝜔, 𝜂
𝑛+1

(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜂
𝑛
(𝜔)) , 𝑔 (𝜔, 𝜂

𝑛+1
(𝜔))) ,

𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝐹 (𝜔, (𝜉 (𝜔) , 𝜃 (𝜔))))} .

(58)

On taking 𝑛 → ∞ in the above inequality and using (57), we
obtain
𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) , 𝐹 (𝜔, (𝜃 (𝜔) , 𝜉 (𝜔))))

≤ 𝜑 (0) + 𝐿min {𝑑 (𝑔 (𝜔, 𝜃 (𝜔)) ,

𝐹 (𝜔, (𝜃 (𝜔) , 𝜉 (𝜔)))) , 0} = 0.

(59)
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This means that 𝑔(𝜔, 𝜃(𝜔)) = 𝐹(𝜔, (𝜃(𝜔), 𝜉(𝜔))). Similarly, it
can be shown that 𝑔(𝜔, 𝜉(𝜔)) = 𝐹(𝜔, (𝜉(𝜔), 𝜃(𝜔))). Thus, 𝐹
and 𝑔 have a coupled coincidence point in𝑋.

The proof is complete.

Remark 12. FollowingTheorem 7 andCorollary 9, we replace
the continuity and monotone of 𝑔, the compatibility of 𝐹 and
𝑔, and the completeness of𝑋 by assuming that 𝑔(𝑋) is a com-
plete subspace of 𝑋. Moreover, by the measurable space, our
random fixed point theorems generalize the main results in
[17].
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