5,900 research outputs found

    QTL analysis of production traits on SSC3 in a Large White×Meishan pig resource family

    Get PDF
    In order to locate the genetic regions that are responsible for economically important traits, a resource population was established by crossing Large White boars and Meishan sows. Phenotypic data of a total of 287 F2 offspring were collected from 1998 to 2000 and QTL analysis conducted using nine microsatellites on Sus scrofa chromosome 3 (SSC3). Least square regression interval mapping revealed two significant QTL effects on dressing percentage and moisture in m. longissimus dorsi, respectively. They were located at 136 cM and 22 cM in the genetic linkage map, near the marker Sw349 and Swr1637, respectively. QTL for dressing percentage had an additive effect of -1.035 ± 0.296% and a dominance effect of 1.056 ± 0.481%, and the explained phenotypic variance was 15.9%. The additive and dominance effects of QTL for moisture in m. longissimus dorsi were -0.025 ± 0.076% and 0.365 ± 0.101%, respectively, indicating that this QTL seemed to be significantly dominant in action. The present study confirms previously identified QTL and provides an important step in the search for the actual major genes involved in the traits of economic interest. South African Journal of Animal Science Vol. 36(2) 2006: 122-12

    Polymorphism of the pig-implantation protein 3 (preis3) gene and its association with litter size traits

    Get PDF
    The pre-implantation protein 3 (prei3), which might play a role in pre-implantation embryogenesis, is one of the promising candidate genes for litter size traits in pigs. In this study, a single nucleotide polymorphism (SNP: T802G) in intron 6 of the pig prei3 gene was detected and a genotyping assay for this SNP was developed. An association study for this SNP with litter size was performed in two independent populations. One population consisted of crossbred sows derived from Landrace, Large White, Chinese Tongcheng and/or Chinese Meishan (Line DIV). The other population constituted of crossbred animals derived from Chinese Qingping and Duroc (QD). Statistical analysis demonstrated that, in first parity, 2.65 more piglets were born and 3.82 more piglets were born alive in sows in Line DIV with genotype TT than with genotype GG. For second and subsequent litters, in both the DIV and QD lines there were significant differences in the number of piglets born alive between TG and GG sows, with the TG sows producing more piglets born alive than the GG sows. These results suggest that the prei3 SNP is significantly associated with litter size in the two populations studied, and could be useful in selection for increasing litter size in pigs. Further investigations on more pig populations with large sample sizes are needed to confirm this. South African Journal of Animal Science Vol. 36(3) 2006: 209-21

    Damage mechanisms in cementitious coatings on steel members in bending

    Get PDF
    Mr Zhao Sheng, Mr Zhang Zhi-Ling, Mr Dong Zhao-Hai and Mr Wu Lin-Sen, and technical staff in the Laboratory in College of Civil Engineering in Tongji University. Natural Science Foundation of China (grant no. 50808143) and key innovative research project of Shanghai Municipal Education Commission (grant no. 09ZZ37

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes

    Full text link
    Generalized Painleve-Gullstrand metrics are explicitly constructed for the Kerr-Newman family of charged rotating black holes. These descriptions are free of all coordinate singularities; moreover, unlike the Doran and other proposed metrics, an extra tunable function is introduced to ensure all variables in the metrics remain real for all values of the mass M, charge Q, angular momentum aM, and cosmological constant \Lambda > - 3/(a^2). To describe fermions in Kerr-Newman spacetimes, the stronger requirement of non-singular vierbein one-forms at the horizon(s) is imposed and coordinate singularities are eliminated by local Lorentz boosts. Other known vierbein fields of Kerr-Newman black holes are analysed and discussed; and it is revealed that some of these descriptions are actually not related by physical Lorentz transformations to the original Kerr-Newman expression in Boyer-Lindquist coordinates - which is the reason complex components appear (for certain ranges of the radial coordinate) in these metrics. As an application of our constructions the correct effective Hawking temperature for Kerr black holes is derived with the method of Parikh and Wilczek.Comment: 5 pages; extended to include application to derivation of Hawking radiation for Kerr black holes with Parikh-Wilczek metho

    Back reaction, covariant anomaly and effective action

    Full text link
    In the presence of back reaction, we first produce the one-loop corrections for the event horizon and Hawking temperature of the Reissner-Nordstr\"om black hole. Then, based on the covariant anomaly cancelation method and the effective action technique, the modified expressions for the fluxes of gauge current and energy momentum tensor, due to the effect of back reaction, are obtained. The results are consistent with the Hawking fluxes of a (1+1)-dimensional blackbody at the temperature with quantum corrections, thus confirming the robustness of the covariant anomaly cancelation method and the effective action technique for black holes with back reaction.Comment: 17 page

    Back reaction, emission spectrum and entropy spectroscopy

    Full text link
    Recently, an interesting work, which reformulates the tunneling framework to directly produce the Hawking emission spectrum and entropy spectroscopy in the tunneling picture, has been received a broad attention. However, during the emission process, most related observations have not incorporated the effects of back reaction on the background spacetime, whose derivations are therefore not the desiring results for the real physical process. With this point as a central motivation, in this paper we suitably adapt the \emph{reformulated} tunneling framework so that it can well accommodate the effects of back reaction to produce the Hawking emission spectrum and entropy spectroscopy. Consequently, we interestingly find that, when back reaction is considered, the Parikh-Wilczek's outstanding observations that, an isolated radiating black hole has an unitary-evolving emission spectrum that is \emph{not} precisely thermal, but is related to the change of the Bekenstein-Hawking entropy, can also be reproduced in the reformulated tunneling framework, meanwhile the entropy spectrum has the same form as that without inclusion of back reaction, which demonstrates the entropy quantum is \emph{independent} of the effects of back reaction. As our final analysis, we concentrate on the issues of the black hole information, but \emph{unfortunately} find that, even including the effects of back reaction and higher-order quantum corrections, such tunneling formalism can still not provide a mechanism for preserving the black hole information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE

    Response of the Gypsy Moth, Lymantria dispar to Transgenic Poplar, Populus simonii x P. nigra, Expressing Fusion Protein Gene of the Spider Insecticidal Peptide and Bt-toxin C-peptide

    Get PDF
    The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω?-ACTX-Ar1 sequence coding for an ω?-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual performance, feeding selection, midgut proteinase activity and nutrition utilization were monitored. The growth and development of L. dispar were significantly affected by continually feeding on the transgenic poplar, with the larval instars displaying significantly shorter developmental times than those fed on nontransgenic poplar, but pupation was delayed. Mortality was higher in populations fed transgenic poplar leaves, than for larvae fed nontransgenic poplar leaves. The cumulative mortality during all stages of larvae fed transgenic leaves was 92% compared to 16.7% of larvae on nontransgenic leaves. The highest mortality observed was 71.7% in the last larval instar stage. A two-choice test showed that fifth-instar larvae preferred to feed on nontransgenic leaves at a ratio of 1:1.4. Feeding on transgenic leaves had highly significant negative effects on relative growth of larvae, and the efficiency of conversion of ingested and digested food. Activity of major midgut proteinases was measured using substrates TAME and BTEE showed significant increases in tryptase and chymotrypsinlike activity (9.2- and 9.0-fold, respectively) in fifth-instar larvae fed on transgenic leaves over control. These results suggest transgenic poplar is resistant to L. dispar, and the mature L. dispar may be weakened by the transgenic plants due to Bt protoxins activated by elevated major midgut proteinase activity. The new transgenic poplar expressing fusion protein genes of Bt and a new spider insecticidal peptide are good candidates for managing gypsy moth

    Regulation of Granulocyte and Macrophage Populations of Murine Bone Marrow Cells by G-CSF and CD137 Protein

    Get PDF
    BACKGROUND: Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis. METHODOLOGY/PRINCIPAL FINDINGS: Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors. CONCLUSIONS/SIGNIFICANCE: This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage

    Non-Parametric Approximations for Anisotropy Estimation in Two-dimensional Differentiable Gaussian Random Fields

    Full text link
    Spatially referenced data often have autocovariance functions with elliptical isolevel contours, a property known as geometric anisotropy. The anisotropy parameters include the tilt of the ellipse (orientation angle) with respect to a reference axis and the aspect ratio of the principal correlation lengths. Since these parameters are unknown a priori, sample estimates are needed to define suitable spatial models for the interpolation of incomplete data. The distribution of the anisotropy statistics is determined by a non-Gaussian sampling joint probability density. By means of analytical calculations, we derive an explicit expression for the joint probability density function of the anisotropy statistics for Gaussian, stationary and differentiable random fields. Based on this expression, we obtain an approximate joint density which we use to formulate a statistical test for isotropy. The approximate joint density is independent of the autocovariance function and provides conservative probability and confidence regions for the anisotropy parameters. We validate the theoretical analysis by means of simulations using synthetic data, and we illustrate the detection of anisotropy changes with a case study involving background radiation exposure data. The approximate joint density provides (i) a stand-alone approximate estimate of the anisotropy statistics distribution (ii) informed initial values for maximum likelihood estimation, and (iii) a useful prior for Bayesian anisotropy inference.Comment: 39 pages; 8 figure
    corecore