6,224 research outputs found

    Disks around massive young stellar objects: are they common?

    Full text link
    We present K-band polarimetric images of several massive young stellar objects at resolutions \sim 0.1-0.5 arcsec. The polarization vectors around these sources are nearly centro-symmetric, indicating they are dominating the illumination of each field. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS1 show well defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work add additional samples around MYSOs equivalent to early B-type stars.Comment: 9 pages, including 2 figures, 1 table, to appear on ApJ

    Cdc42-mediated supracellular cytoskeleton induced cancer cell migration under low shear stress

    Get PDF
    Tumor microenvironment is composed of biological, chemical and physical factors. Mechanical factors are more and more focused these years. Therefore, mimicking mechanical factors' contribution to cancer cell malignancy will greatly improve the advance in this field. Although the induced malignant behaviors are present under many stimuli such as growth or inflammatory factors, the cell key physical migration mechanisms are still missing. In this study, we identify that low shear stress significantly promotes the formation of needle-shaped membrane protrusions, which is called filopodia and important for the sense and interact of a cell with extracellular matrix in the tumor microenvironment. Under low shear stress, the migration is promoted while it is inhibited in the presence of ROCK inhibitor Y27632, which could abolish the F-actin network. Using cell imaging, we further unravel that key to these protrusions is Cell division cycle 42 (Cdc42) dependent. After Cdc42 activation, the filopodia is more and longer, acting as massagers to pass the information from a cell to the microenvironment for its malignant phenotype. In the Cdc42 inhibition, the filopodia is greatly reduced. Moreover, small GTPases Cdc42 rather than Rac1 and Rho directly controls the filopodia formation. Our work highlights that low shear stress and Cdc42 activation are sufficient to promote filopodia formation, it not only points out the novel structure for cancer progression but also provides the experimental physical basis for the efficient drug anti-cancer strategies

    Light Field Salient Object Detection: A Review and Benchmark

    Full text link
    Salient object detection (SOD) is a long-standing research topic in computer vision and has drawn an increasing amount of research interest in the past decade. This paper provides the first comprehensive review and benchmark for light field SOD, which has long been lacking in the saliency community. Firstly, we introduce preliminary knowledge on light fields, including theory and data forms, and then review existing studies on light field SOD, covering ten traditional models, seven deep learning-based models, one comparative study, and one brief review. Existing datasets for light field SOD are also summarized with detailed information and statistical analyses. Secondly, we benchmark nine representative light field SOD models together with several cutting-edge RGB-D SOD models on four widely used light field datasets, from which insightful discussions and analyses, including a comparison between light field SOD and RGB-D SOD models, are achieved. Besides, due to the inconsistency of datasets in their current forms, we further generate complete data and supplement focal stacks, depth maps and multi-view images for the inconsistent datasets, making them consistent and unified. Our supplemental data makes a universal benchmark possible. Lastly, because light field SOD is quite a special problem attributed to its diverse data representations and high dependency on acquisition hardware, making it differ greatly from other saliency detection tasks, we provide nine hints into the challenges and future directions, and outline several open issues. We hope our review and benchmarking could help advance research in this field. All the materials including collected models, datasets, benchmarking results, and supplemented light field datasets will be publicly available on our project site https://github.com/kerenfu/LFSOD-Survey

    LT4REC:A Lottery Ticket Hypothesis Based Multi-task Practice for Video Recommendation System

    Full text link
    Click-through rate prediction (CTR) and post-click conversion rate prediction (CVR) play key roles across all industrial ranking systems, such as recommendation systems, online advertising, and search engines. Different from the extensive research on CTR, there is much less research on CVR estimation, whose main challenge is extreme data sparsity with one or two orders of magnitude reduction in the number of samples than CTR. People try to solve this problem with the paradigm of multi-task learning with the sufficient samples of CTR, but the typical hard sharing method can't effectively solve this problem, because it is difficult to analyze which parts of network components can be shared and which parts are in conflict, i.e., there is a large inaccuracy with artificially designed neurons sharing. In this paper, we model CVR in a brand-new method by adopting the lottery-ticket-hypothesis-based sparse sharing multi-task learning, which can automatically and flexibly learn which neuron weights to be shared without artificial experience. Experiments on the dataset gathered from traffic logs of Tencent video's recommendation system demonstrate that sparse sharing in the CVR model significantly outperforms competitive methods. Due to the nature of weight sparsity in sparse sharing, it can also significantly reduce computational complexity and memory usage which are very important in the industrial recommendation system.Comment: 6 pages,4 figure

    Analytical solution of the nitracline with the evolution of subsurface chlorophyll maximum in stratified water columns

    Get PDF
    In a stratified water column, the nitracline is a layer where the nitrate concentration increases below the nutrient-depleted upper layer, exhibiting a strong vertical gradient in the euphotic zone. The subsurface chlorophyll maximum layer (SCML) forms near the bottom of the euphotic zone, acting as a trap to diminish the upward nutrient supply. Depth and steepness of the nitracline are important measurable parameters related to the vertical transport of nitrate into the euphotic zone. The correlation between the SCML and the nitracline has been widely reported in the literature, but the analytic solution for the relationship between them is not well established. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient-phytoplankton model. The model is well suited to explain basic dependencies between a nitracline and an SCML. The analytical solution shows that the nitracline depth is deeper than the depth of the SCML, shoaling with an increase in the light attenuation coefficient and with a decrease in surface light intensity. The inverse proportional relationship between the light level at the nitracline depth and the maximum rate of new primary production is derived. Analytic solutions also show that a thinner SCML corresponds to a steeper nitracline. The nitracline steepness is positively related to the light attenuation coefficient but independent of surface light intensity. The derived equations of the nitracline in relation to the SCML provide further insight into the important role of the nitracline in marine pelagic ecosystems

    Aerosolised surfactant generated by a novel noninvasive apparatus reduced acute lung injury in rats

    Get PDF
    Abstract Introduction Exogenous surfactant has been explored as a potential therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In the present study, a nebuliser driven by oxygen lines found in the hospital was developed to deliver aerosolised porcine pulmonary surfactant (PPS). We hypothesised that aerosolised surfactant inhaled through spontaneous breathing may effectively reduce severe lung injury. Methods Rats were intravenously injected with oleic acid (OA) to induce ALI and 30 minutes later they were divided into five groups: model (injury only), PPS aerosol (PPS-aer), saline aerosol (saline-aer), PPS instillation (PPS-inst), and saline instillation (Saline-Inst). Blood gases, lung histology, and protein and TNF-α concentrations in the bronchoalveolar lavage fluid (BALF) were examined. Results The PPS aerosol particles were less than 2.0 μm in size as determined by a laser aerosol particle counter. Treatment of animals with a PPS aerosol significantly increased the phospholipid content in the BALF, improved lung function, reduced pulmonary oedema, decreased total protein and TNF-α concentrations in BALF, ameliorated lung injury and improved animal survival. These therapeutic effects are similar to those seen in the PPS-inst group. Conclusions This new method of PPS aerosolisation combines the therapeutic effects of a surfactant with partial oxygen inhalation under spontaneous breathing. It is an effective, simple and safe method of administering an exogenous surfactant

    First identification of PODXL nonsense mutations in autosomal dominant focal segmental glomerulosclerosis

    Get PDF
    Recently, a novel heterozygous missense mutation c.T1421G (p. L474R) in the PODXL gene encoding podocalyxin, was identified in an autosomal dominant focal segmental glomerulosclerosis (AD-FSGS) pedigree. However, this PODXL mutation appeared not to impair podocalyxin function and it is necessary to identify new PODXL mutations and determine their causative role for FSGS. In this study, we report the identification of a heterozygous nonsense PODXL mutations (Arg326X) in a Chinese pedigree featured by proteinuria and renal insufficiency with AD inheritance by whole exome sequencing (WES). Total mRNA and PODXL protein abundance were decreased in available peripheral blood cell samples of two affected patients undergoing hemodialysis, compared to those in healthy controls and hemodialysis controls without PODXL mutation. We identified another novel PODXL heterozygous nonsense mutation (c.C1133G; p.Ser378X) in a British-Indian pedigree of AD-FSGS by WES. In vitro study showed that, human embryonic kidney (HEK) 293T cells transfected with the pEGFP-PODXL-Arg326X or pEGFP-PODXL-Ser378X plasmid expressed significantly lower mRNA and PODXL protein compared to cells transfected with the wild-type plasmid. Blocking nonsense-mediated mRNA decay (NMD) significantly restored the amount of mutant mRNA and PODXL proteins, which indicated that the pathogenic effect of PODXL nonsense mutations is likely due to NMD, resulting in podocalyxin deficiency. Functional consequences caused by the PODXL nonsense mutations were inferred by siRNA knockdown in cultured podocytes and podocalyxin downregulation by siRNA resulted in decreased RhoA and ezrin activities, cell migration and stress fiber formation. Our results provided new data implicating heterozygous PODXL nonsense mutations in the development of FSGS
    corecore