10,674 research outputs found

    Multi-Objective Demand Side Scheduling Considering the Operational Safety of Appliances

    Get PDF
    The safe operation of appliances is of great concern to users. The safety risk increases when the appliances are in operation during periods when users are not at home or when they are asleep. In this paper, multi-objective demand side scheduling is investigated with consideration to the appliances’ operational safety together with the electricity cost and the operational delay. The formulation of appliances’ operational safety is proposed based on users’ at-home status and awake status. Then the relationships between the operational safety and the other two objectives are investigated through the approach of finding the Pareto-optimal front. Moreover, this approach is compared with the Weigh and Constraint approaches. As the Pareto-optimal front consists of a set of optimal solutions, this paper proposes a method to make the final scheduling decision based on the relationships among the multiple objectives. Simulation results demonstrate that the operational safety is improved with the sacrifice of the electricity cost and the operational delay, and that the approach of finding the Pareto-optimal front is effective in presenting comprehensive optimal solutions of the multi-objective demand side scheduling

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    Minimum thermal conductance in graphene and boron nitride superlattice

    Full text link
    The minimum thermal conductance versus supercell size (dsd_{s}) is revealed in graphene and boron nitride superlattice with dsd_{s} far below the phonon mean free path. The minimum value is reached at a constant ratio of ds/L5d_{s}/L\approx 5%, where LL is the total length of the superlattice; thus the minimum point of dsd_{s} depends on LL. The phenomenon is attributed to the localization property and the number of confined modes in the superlattice. With the increase of dsd_{s}, the localization of the confined mode is enhanced while the number of confined modes decreases, which directly results in the minimum thermal conductance.Comment: accepted by AP

    Reproducibility and intraindividual variation over days in buccal cell DNA methylation of two asthma genes, interferon γ (IFNγ) and inducible nitric oxide synthase (iNOS)

    Get PDF
    The biological mechanisms responsible for the onset and exacerbation of asthma symptoms in children may involve the epigenetic regulation of inflammatory genes after environmental exposures. Using buccal cells, we hypothesized that DNA methylation in promoter regions of two asthma genes, inducible nitric oxide synthase (iNOS) and interferon γ (IFNγ), can vary over several days. Repeat buccal samples were collected 4 to 7 days apart from 34 children participating in the Columbia Center for Children's Environmental Health (CCCEH) birth cohort study. Several field duplicates (sequential collection of two samples in the field) and replicates (one sample pyrosequenced twice) also were collected to ensure consistency with collection and laboratory procedures. DNA methylation was assessed by pyrosequencing a PCR of bisulfite-treated DNA. We found that replicate and field duplicate samples were correlated strongly (r = 0.86 to 0.99, P < 0.05), while repeat samples demonstrated low within-subject correlations (r = 0.19 to 0.56, P = 0.06 to 0.30). Our data reveal DNA methylation as a dynamic epigenetic mechanism that can be accessed safely and reproducibly in an inner city pediatric cohort using non-invasive buccal swabs and pyrosequencing technology

    A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect

    Get PDF
    mibnn2002, found from an allele screen, showed early segmentation defect and severe cell death phenotypes, which are different from previously known mib mutants. Despite distinct morphological phenotypes, the typical mib molecular phenotypes: her4 down-regulation, neurogenic phenotype and cold sensitive dlc expression pattern, still remained. The linkage analysis also indicated that mibnn2002 is a new mib allele. Failure of specification in anterior 7-10 somites is likely due to lack of foxc1a expression in mibnn2002 homozygotes. Somites and somite markers gradually appeared after 7-10 somite stage, suggesting that foxc1a is only essential for the formation of anterior 7-10 somites. Apoptosis began around 16-somite stage with p53 up-regulation. To find the possible links of mib, foxc1a and apoptosis, transcriptome analysis was employed. About 140 genes, including wnt3a, foxc1a and mib, were not detected in the homozygotes. Overexpression of foxc1a mRNA in mibnn2002 homozygotes partially rescued the anterior somite specification. In the process of characterizing mibnn2002 mutation, we integrated the scaffolds containing mib locus into chromosome 2 (or linkage group 2, LG2) based on synteny comparison and transcriptome results. Genomic PCR analysis further supported the conclusion and showed that mibnn2002 has a chromosomal deletion with the size of about 9.6 Mbp.published_or_final_versio

    A Bayesian method for evaluating and discovering disease loci associations

    Get PDF
    Background: A genome-wide association study (GWAS) typically involves examining representative SNPs in individuals from some population. A GWAS data set can concern a million SNPs and may soon concern billions. Researchers investigate the association of each SNP individually with a disease, and it is becoming increasingly commonplace to also analyze multi-SNP associations. Techniques for handling so many hypotheses include the Bonferroni correction and recently developed Bayesian methods. These methods can encounter problems. Most importantly, they are not applicable to a complex multi-locus hypothesis which has several competing hypotheses rather than only a null hypothesis. A method that computes the posterior probability of complex hypotheses is a pressing need. Methodology/Findings: We introduce the Bayesian network posterior probability (BNPP) method which addresses the difficulties. The method represents the relationship between a disease and SNPs using a directed acyclic graph (DAG) model, and computes the likelihood of such models using a Bayesian network scoring criterion. The posterior probability of a hypothesis is computed based on the likelihoods of all competing hypotheses. The BNPP can not only be used to evaluate a hypothesis that has previously been discovered or suspected, but also to discover new disease loci associations. The results of experiments using simulated and real data sets are presented. Our results concerning simulated data sets indicate that the BNPP exhibits both better evaluation and discovery performance than does a p-value based method. For the real data sets, previous findings in the literature are confirmed and additional findings are found. Conclusions/Significance: We conclude that the BNPP resolves a pressing problem by providing a way to compute the posterior probability of complex multi-locus hypotheses. A researcher can use the BNPP to determine the expected utility of investigating a hypothesis further. Furthermore, we conclude that the BNPP is a promising method for discovering disease loci associations. © 2011 Jiang et al

    Spatially configuring wrinkle pattern and multiscale surface evolution with structural confinement

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Surface elastic instabilities, such as wrinkling and creasing, can enable a convenient strategy to impart reversible patterned topography to a surface. Here the classic system of a stiff layer on a soft substrate is focused, which famously produces parallel harmonic wrinkles at modest uniaxial compression that period-double repeatedly at higher compressions and ultimately evolve into deep folds and creases. By introducing micrometer-scale planar Bravais lattice holes to spatially pattern the substrate, these instabilities are guided into a wide variety of different patterns, including wrinkling in parallel bands and star shape bands, and radically reduce the threshold compression. The experimental patterns and thresholds are enabled to understand by considering a simple plane-strain model for the patterned substrate-deformation, decorated by wrinkling on the stiff surface layer. The experiments also show localized wrinkle-crease transitions at modest compression, yielding a hierarchical surface with different generations of instability mixed together. By varying the geometrical inputs, control over the stepwise evolution of surface morphologies is demonstrated. These results demonstrate considerable control over both the patterns and threshold of the surface elastic instabilities, and have relevance to many emerging applications of morphing surfaces, including in wearable/flexible electronics, biomedical systems, and optical devices

    On a Cahn--Hilliard--Darcy system for tumour growth with solution dependent source terms

    Full text link
    We study the existence of weak solutions to a mixture model for tumour growth that consists of a Cahn--Hilliard--Darcy system coupled with an elliptic reaction-diffusion equation. The Darcy law gives rise to an elliptic equation for the pressure that is coupled to the convective Cahn--Hilliard equation through convective and source terms. Both Dirichlet and Robin boundary conditions are considered for the pressure variable, which allows for the source terms to be dependent on the solution variables.Comment: 18 pages, changed proof from fixed point argument to Galerkin approximatio

    An avalanche-photodiode-based photon-number-resolving detector

    Full text link
    Avalanche photodiodes are widely used as practical detectors of single photons.1 Although conventional devices respond to one or more photons, they cannot resolve the number in the incident pulse or short time interval. However, such photon number resolving detectors are urgently needed for applications in quantum computing,2-4 communications5 and interferometry,6 as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current belief,3,4 avalanche photodiodes are capable of detecting photon number, using a technique to measure very weak avalanches at the early stage of their development. Under such conditions the output signal from the avalanche photodiode is proportional to the number of photons in the incident pulse. As a compact, mass-manufactured device, operating without cryogens and at telecom wavelengths, it offers a practical solution for photon number detection.Comment: 12 pages, 4 figure
    corecore