
Multi-Objective Demand Side Scheduling Considering

the Operational Safety of Appliances

Y.F. Dua, L. Jianga, Y.Z. Lia, J. Counsella, J.S. Smitha

aDepartment of Electrical Engineering and Electronics, University of Liverpool,
Liverpool, L69 3GJ, U.K.

Abstract

The safe operation of appliances is of great concern to users. The safety risk
increases when the appliances are in operation during periods when users
are not at home or when they are asleep. In this paper, multi-objective de-
mand side scheduling is investigated with consideration to the appliances’
operational safety together with the electricity cost and the operational de-
lay. The formulation of appliances’ operational safety is proposed based on
users’ at-home status and awake status. Then the relationships between
the operational safety and the other two objectives are investigated through
the approach of finding the Pareto-optimal front. Moreover, this approach is
compared with the Weigh and Constraint approaches. As the Pareto-optimal
front consists of a set of optimal solutions, this paper proposes a method to
make the final scheduling decision based on the relationships among the mul-
tiple objectives. Simulation results demonstrate that the operational safety
is improved with the sacrifice of the electricity cost and the operational de-
lay, and that the approach of finding the Pareto-optimal front is effective in
presenting comprehensive optimal solutions of the multi-objective demand
side scheduling.
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1. Introduction

Demand side scheduling aims to schedule the energy consumption of ap-
pliances in response to varying electricity prices over time, or to incentive
payments, or when system reliability is jeopardized [1, 2, 3]. Multiple ob-
jectives have been considered in the demand side scheduling, such as the
minimization of the electricity cost [4, 5, 6, 7, 8], the reduction in the delay
of the appliances’ operations [6, 7], the improvement of the system reliability
[9], the promotion of the renewable energy [10, 11], and the improvement
of the users’ convenience level [8]. However, to the best knowledge of the
authors, improving the operational safety of appliances has not been consid-
ered in demand side scheduling, and it should be paid more attention. 1083
fires caused by washing machines and tumble driers, and 475 fires caused by
dishwashers had happened in the United Kingdom in 2011/2012 [12]. 8500
fires caused by home appliances had resulted in a 265 million dollar loss in
the United States in 2010 [13]. It is evident that the consequences in the
cases of the appliances’ faults will deteriorate if the appliances are in opera-
tion during periods when users are not at home or are asleep. As the safety
risk is of great concern to users, the operational safety is worth considering
in demand side scheduling to further optimize the energy usage. The rela-
tionships between the operational safety and other objectives need clarified
with the operational safety taken into account as a new objective.

Multi-objective demand side scheduling (MODSS) takes into account sev-
eral objectives simultaneously and is usually solved by converting multiple
objectives to a single objective [4, 5, 6, 7]. [6, 7] weigh the importance of
multiple objectives and sum the objectives with their corresponding impor-
tance factors as the final objective function. One objective is optimized with
constraints that confine the deviations of other objectives from their corre-
sponding optimal values within certain ranges as described in [4, 5]. However,
the approach that weighs the importance of each objective in the final objec-
tive function makes the physical meaning of the final objective unclear, and
its solution largely depends on the predefined weights of multiple objectives
[6, 7]. The approach that sets constraints to objectives does not optimize
the objectives in the constraints and it only requires them within certain
ranges, and the solution of this approach depends on the predefined ranges
in the constraints [4, 5]. An alternative approach to those that tackle multi-
ple objectives through the conversion and then the optimization of the final
objective function, is to simultaneously optimize multiple objectives directly
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through finding the Pareto-optimal front. This approach does not depend
on the predefined weights or ranges, and it simultaneously optimizes mul-
tiple objectives with clear physical meaning [14]. The approach of finding
the Pareto-optimal front is presented in [14]. However, to the best knowl-
edge of the authors, no previous work compares this approach with the other
approaches in dealing with MODSS.

In this paper, the improvement of appliances’ operational safety is pro-
posed as a new objective of the MODSS, to further optimize the scheduling
of energy consumption. The approach of finding the Pareto-optimal front is
adopted to deal with the MODSS and to investigate the relationships between
the operational safety and other objectives. This approach is compared with
the approach that weighs the importance of multiple objectives and the ap-
proach that sets constraints to the deviations of objectives from their optimal
values. For convenience, these three approaches are referred to as the Pareto
approach, the Weigh approach and the Constraint approach, respectively.
The operational safety is taken into account based on whether users are at
home and awake to supervise the appliances’ operations. Apart from the op-
erational safety, the electricity cost and the operational delay are considered
in the MODSS. Since the reduction of the electricity cost is the motivation
for users to participate in demand side scheduling, it should be considered
in the MODSS [1, 4, 5]. As the operational delay relates to the wish that
the operations of the appliances are completed as soon as possible [7, 15, 16],
the operational delay is more often given a higher weighting compared with
other objectives [6, 7, 15, 16] and is taken into account in this paper. Three
situations considering the operational safety together with one or both of the
electricity cost and the operational delay are considered in the comparison
between the Pareto approach and the other two approaches. Furthermore, a
method considering the relationships among the three objectives is proposed
to make the final scheduling decision of energy consumption among solutions
of the Pareto-optimal front.

The rest of the paper is organized as follows. The system model is pre-
sented in Section 2. Section 3 introduces the multi-objective demand side
scheduling and the three approaches dealing with multiple objectives are
presented in Section 4. Section 5 introduces the method of decision making
based on the Pareto approach and simulations are presented in Section 6.
Finally, conclusions are presented in Section 7.
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2. System model

The structure of the energy management system is shown in Fig. 1.
Based on the day-ahead real-time electricity price, the users’ demands for
the appliances’ operations and the users’ at-home and awake status, the
energy management controller (EMC) will automatically control the energy
consumption of shiftable (time adjustable) appliances.

The EMC is the main part of the energy management system. The elec-
tricity price is transmitted to the EMC a day ahead with the real-time price
for next day from the utility company [8, 17, 18]. The users’ demands for
the appliances’ operations and their at-home and awake status are defined
and input to the EMC by users as users have different demands for appli-
ances’ operations and their at-home status and awake status are different
as well. Based on the day-ahead real-time electricity price, users’ demands
and status, the EMC works out the energy consumption schedules for home
appliances based on the proposed method that will be introduced in the fol-
lowing sections. Then the appliances will be controlled automatically by the
EMC according to the energy consumption schedules through the home area
network [6, 7]. The home appliances are categorized into shiftable appliances
and manually operated appliances. The energy consumption of shiftable ap-
pliances, such as water heaters and washing machines, is flexible and they can
be scheduled in advance [18, 19, 20], and are assumed to be non-interruptible
[5]. The manually operated appliances whose energy consumption is fixed
and manually controlled based on users’ real-time demands, such as TV and

Power line

EMC

Electricity price

Demands At-home 
status

Awake 
status

Shiftable
appliances

Fig. 1: Energy management system
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lights, are not included in the energy management system [21].
The users’ demands for appliances’ operations include the length of op-

eration time (LOT) and the operation time interval (OTI), which are repre-
sented by γa and [αa, βa] for appliance a, respectively [6], where αa indicates
the earliest start time of the operation and βa indicates the deadline for fin-
ishing the operation. Considering the general operation time of appliances,
1 hour is divided into 5 time slots [6] and the LOT is mapped to time slots
with one time slot representing 12 minutes. For example, the LOT is 2, i.e.,
γ = 2, for an appliance whose operation length is 24 minutes. The LOT
is approximated to be the greater and nearest integer when the operation
length is not an integer multiple of 12 minutes [6]. One day is mapped to
120 time slots and the OTI is also mapped to the corresponding time slot.
For instance, the OTI is from 1 to 60, i.e., α = 1, β = 60, for an appliance
whose operation is predefined between 12 midnight and 12 noon.

3. Multi-objective demand side scheduling

The multiple objectives including the minimizations of the appliances’
operational unsafety (i.e., the maximization of the appliances’ operational
safety), the electricity cost and the appliances’ operational delay are consid-
ered in MODSS, and their formulations are presented as follows.

3.1. Multiple objectives

• Objective 1: Minimization of appliances’ operational unsafety

The operational unsafety of appliances is taken into account based on
whether users are at home and awake to supervise the appliances’ operations.
The situation that the energy consumption of appliances is scheduled in
periods when users are not at home or are asleep is to be reduced and this
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Fig. 2: The illustration of the concept of unsafety time rate

situation is quantified by introducing the unsafety time rate

UTRa(xa) =
γa−sa(xa)

γa

sa(xa) =
T∑
t=1

Sa(xa, t) ·M(t) ·N(t)

Sa(xa, t) =

{
1, t ∈ [xa, xa + γa − 1]
0, t ∈ H\[xa, xa + γa − 1]

M(t) =

{
1, users are at home
0, users are away

N(t) =

{
1, users are awake
0, users are asleep

H = {1, 2, · · · , T}, xa ∈ [αa, βa − γa + 1]

(1)

where UTRa denotes the unsafety time rate of appliance a and xa is the start
time slot of the appliance’s operation. sa denotes the number of time slots
that users are at home and awake when appliance a is in operation and it is
determined by the appliance’s operation status Sa(xa, t) with the knowledge
of users’ at-home statusM(t) and awake status N(t) in a day. The expression
t ∈ H\[xa, xa+γa−1] indicates that t belongs to H = {1, 2, · · · , T} excluding
the range [xa, xa+γa−1] and T = 120 is the scheduling horizon that indicates
the number of time slots ahead which the energy consumption schedule is
made for shiftable appliances. xa ∈ [αa, βa − γa + 1] since the operation
should start ahead the deadline by at least the length of the operation time.
Fig. 2 shows the illustration of the concept of unsafety time rate.

For a home with n shiftable appliances, the minimization of the appli-
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ances’ operational unsafety is formulated as

min
X

f1(X)

f1(X) =
n∑

a=1

ρ
UTRa(xa)
a

UTRa(xa) =
γa−sa(xa)

γa

sa(xa) =
T∑
t=1

Sa(xa, t) ·M(t) ·N(t)

Sa(xa, t) =

{
1, t ∈ [xa, xa + γa − 1]
0, t ∈ H\[xa, xa + γa − 1]

M(t) =

{
1, users are at home
0, users are away

N(t) =

{
1, users are awake
0, users are asleep

H = {1, 2, · · · , T}
X = {x1, x2, · · · , xa, · · · , xn}
subject to
xa ∈ [αa, βa − γa + 1], a = {1, 2, · · · , n}

(2)

where X = {x1, x2, · · · , xa, · · · , xn} denotes the set of appliances’ start time
slots, and ρa > 1 denotes the unsafety parameter of appliance a, the higher
the value of ρa, the higher will be the cost of the operational unsafety. When
the start time slots of appliances are determined, the unsafety time rates
(UTRs) of appliances are obtained based on (1) and the operational unsafety
is obtained with ρUTRa

a . With the higher value of the unsafety parameter ρa,
the operational unsafety will be higher. The UTR is the ratio between the
time slots of unsafe operation and the operation length, and the time slots
of unsafe operation are the ones when the appliance is in operation but users
are not at home or users are asleep. Note that different appliances may have
the same UTR and ρa is introduced to differentiate the operational unsafety
of appliances, and that the UTR and ρa jointly determine the appliance’s
operational unsafety with ρUTRa

a .
It is noted that the users’ at-home status M(t) and awake status N(t)

are individually defined by users as different users have different at-home
status and awake status. Based on the users’ predefined at-home status and
awake status, the appliances’ operational unsafety is obtained by (2). For
the same energy consumption schedule, the operational unsafety is different
under different users’ statuses. For example, when the washing machine is
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scheduled to operate through 49 time slot to 53 time slot, for one user who is
at home all day long except the period from 51 time slot to 60 time slot, and
awake from 41 time slot to 115 time slot and asleep for other time slots, the
UTR of the washing machine is 3/5 while the UTR is 0 for another user who
is with the same awake status and at-home all day long. The corresponding
operational unsafety of the washing machine are 1.52 and 1 for the two users
with different at-home statuses, respectively, when the unsafety parameter
of washing machine is assumed to be 2.

• Objective 2: Minimization of electricity cost

Let pa denote the power of appliance a. Since 1 hour is divided into 5
time slots and it is assumed that the energy consumption is the same in all
the time slots during the operation periods of an appliance [6], the energy
consumption of appliance a in a time slot is pa

5
when it is in operation. The

energy consumption schedule of appliance a is

Ea =
{
eta |eta = pa

5
, t ∈ [xa, xa + γa − 1],

eta = 0, t ∈ H\[xa, xa + γa − 1],

H = {1, 2, · · · , T}, xa ∈ [αa, βa − γa + 1]
} (3)

where eta is the energy consumption of appliance a during time slot t. Based
on the energy consumption of appliances and the day-ahead real-time elec-
tricity price, the minimization of electricity cost is formulated as

min
X

f2(X)

f2(X) =
T∑
t=1

prct · lt(X)

lt(X) =
n∑

a=1

eta

X = {x1, x2, · · · , xa, · · · , xn}
subject to
xa ∈ [αa, βa − γa + 1], a = {1, 2, · · · , n}

(4)

where prct is the real-time electricity price at time slot t, and lt is the total
energy consumption of all the shiftable appliances during time slot t, and
it can be obtained when the set of start time slots of all appliances X is
determined and the energy consumption of each appliance is scheduled by
(3).

8



Appliance is in operation 
   

Appliance is in operation 

 

 

 

 

 

+ 1  

   

+ 1 

+ 1 

 

Fig. 3: The illustration of the concept of delay time rate

• Objective 3: Minimization of appliances’ operational delay

As shown in Fig. 3, the appliance’s operational delay is the delay time
from αa, the earliest start time of the operation, and the longest delay occurs
when the appliance just meets the deadline to finish its operation, i.e., the
appliance starts at the time slot βa − γa + 1 [6]. The delay time rate is
introduced to illustrate the appliance’s operational delay

DTRa(xa) =
xa − αa

βa − γa + 1− αa
(5)

whereDTRa is the delay time rate of appliance a. For a home with n shiftable
appliances, the minimization of operational delay is formulated as

min
X

f3(X)

f3(X) =
n∑

a=1

σ
DTRa(xa)
a

DTRa(xa) =
xa−αa

βa−γa+1−αa

X = {x1, x2, · · · , xa, · · · , xn}
subject to
xa ∈ [αa, βa − γa + 1], a = {1, 2, · · · , n}

(6)

where σa > 1 denotes the delay parameter of appliance a, the higher the
value of σa, the higher will be the cost of the operational delay [6].

3.2. Problem formulation

Considering minimizations of the appliances’ operational unsafety, the
electricity cost and the appliances’ operational delay, the MODSS is formu-
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lated as
min
X

F (X)

F (X) = (f1(X), f2(X), f3(X))

f1(X) =
n∑

a=1

ρ
UTRa(xa)
a , UTRa(xa) =

γa−sa(xa)
γa

f2(X) =
T∑
t=1

prct · lt(X), lt(X) =
n∑

a=1

eta

f3(X) =
n∑

a=1

σ
DTRa(xa)
a , DTRa(xa) =

xa−αa

βa−γa+1−αa

X = {x1, x2, · · · , xa, · · · , xn}
subject to
xa ∈ [αa, βa − γa + 1], a = {1, 2, · · · , n}

(7)

where F (X) is the set of multiple objective functions.

4. Three approaches for dealing with multiple objectives

To solve the problem of demand side scheduling with consideration of
the multiple objectives presented in the previous section, three approaches
including the Pareto approach, the Weigh approach and the Constraint ap-
proach are presented in this section.

4.1. Pareto approach

The Pareto approach aims to find a set of optimal solutions to the multi-
objective optimization problem and these solutions are nondominated by
other solutions in the feasible domain, which is defined as follows. Let Ω
denote the set of feasible solutions of (7)

Ω =
{
X|X = {x1, x2, · · · , xa, · · · , xn},
xa ∈ [αa, βa − γa + 1], a = {1, 2, · · · , n}}. (8)

For the set of appliances’ start time slots Xi, Xj ∈ Ω, if⎧⎨
⎩

f1(Xi) < f1(Xj)
f2(Xi) < f2(Xj)
f3(Xi) < f3(Xj)

(9)

it can be defined that F (Xi) < F (Xj) and Xi dominates Xj [14]. That Xi

dominates Xj shows all the objectives of solution Xi are better than that of
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Feasible solutions 

f1 

f2 

Pareto-optimal  
front 

Fig. 4: The Pareto-optimal front

Xj. If some objectives of Xi are better and some are worse than the corre-
sponding objectives of Xj , it cannot be concluded that Xi dominates Xj. Let
X = {X1, X2, · · · , Xk} denote the set of nondominated solutions. For each
Xj ∈ X, it is not possible to find a Xi ∈ Ω that satisfies F (Xi) < F (Xj),
i.e., there is no solution among the feasible solutions that satisfies all the
objectives are better than the solutions in X. The objective values of the
solutions of the nondominated set constitute a front known as the Pareto-
optimal front, i.e., the nondominated solutions are the ones corresponding
to the Pareto-optimal front. Fig. 4 shows the concept of the Pareto-optimal
front based on an optimization problem with consideration of the minimiza-
tions of two objectives [22]. It can be seen from Fig. 4 that no solutions
among feasible solutions satisfy both f1 and f2 are smaller than the solutions
of the Pareto-optimal front. To obtain the solutions of the Pareto-optimal
front, the nondominated sorting genetic algorithm-II (NSGA-II) is usually
adopted, and more details of this algorithm can be found in [22].

4.2. Weigh approach

The Weigh approach attaches importance factors to the three objectives
in (7). To make the three objectives commensurable, the problem of demand
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side scheduling considering multiple objectives is formulated as

min
X

w1
f1(X)
f1

+ w2
f2(X)
f2

+ w3
f3(X)
f3

w1 + w2 + w3 = 1

f1(X) =
n∑

a=1

ρ
UTRa(xa)
a , UTRa(xa) =

γa−sa(xa)
γa

f2(X) =
T∑
t=1

prct · lt(X), lt(X) =
n∑

a=1

eta

f3(X) =
n∑

a=1

σ
DTRa(xa)
a , DTRa(xa) =

xa−αa

βa−γa+1−αa

f1 = min
X∈Ω

f1(X)

f2 = min
X∈Ω

f2(X)

f3 = min
X∈Ω

f3(X)

X = {x1, x2, · · · , xa, · · · , xn}
subject to
xa ∈ [αa, βa − γa + 1], a = {1, 2, · · · , n}

(10)

where 0 ≤ w1, w2, w3 ≤ 1 are the importance factors of the operational
unsafety, the electricity cost and the operational delay, respectively, and f1,
f2 and f3 are the minimum values of f1(X), f2(X) and f3(X). Using the
Weigh approach, the multi-objective optimization problem is converted to a
problem with a single objective, which can be solved by genetic algorithm
(GA), and only one optimal solution will be obtained [6, 7].

4.3. Constraint approach

The Constraint approach optimizes one objective in (7) subject to the
constraint that the deviations of the other two objectives from their corre-
sponding optimal values are within certain ranges. Taking as an example
that f1(X) is minimized with the constraints of f2(X) and f3(X), the prob-
lem of demand side scheduling considering multiple objectives through the
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Constraint approach is formulated as

min
X

f1(X)

f1(X) =
n∑

a=1

ρ
UTRa(xa)
a , UTRa(xa) =

γa−sa(xa)
γa

X = {x1, x2, · · · , xa, · · · , xn}
subject to
f2(X) ≤ (1 + η2)f2
f3(X) ≤ (1 + η3)f3

f2(X) =
T∑
t=1

prct · lt(X), lt(X) =
n∑

a=1

eta

f3(X) =
n∑

a=1

σ
DTRa(xa)
a , DTRa(xa) =

xa−αa

βa−γa+1−αa

f2 = min
X∈Ω

f2(X)

f3 = min
X∈Ω

f3(X)

xa ∈ [αa, βa − γa + 1], a = {1, 2, · · · , n}

(11)

where η2, η3 ≥ 0 are the constraint factors of the electricity cost and the
operational delay, respectively [5]. The problem (11) can also be solved
through GA and only one optimal solution will be obtained [4, 5].

It can be seen from the formulations of approaches that the Weigh ap-
proach and the Constraint approach depend on the importance factors and
the constraint factors, respectively. The physical meaning of the objective
function of the Weigh approach is unclear and the objectives in the con-
straints are not optimized for the Constraint approach. By comparison, the
Pareto approach does not depend on the predefined factors and it simultane-
ously optimizes multiple objectives with clear physical meaning. Therefore,
the Pareto approach is adopted to solve the problem of MODSS.

5. Decision making of the Pareto approach

As the Pareto approach provides a set of optimal solutions, this paper
proposes a method to make the final scheduling decision taking into account
the importance factors w1, w2, w3 of the three objectives. The important fac-
tors can be defined by users, or users can just define the importance rank of
the three objectives. It is quite common for users to only provide the impor-
tance rank when multiple objectives are taken into account [23]. Considering
that the sum of the importance factors is 1 and that the more important
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objective has a higher factor, the importance factors are determined by the
EMC with wm = (1/N)

∑N
j=δm

(1/j), m = 1, 2, · · · , N [23, 24, 25, 26]. N
denotes the number of objectives and δm denotes the importance rank of
objective m. For example, if the importance rank of the three objectives
is objective 1, objective 2, objective 3, i.e., the objective 1 is the most im-
portant, following objective 2 and objective 3, the importance factors are
w1 = 11/18, w2 = 5/18 and w3 = 1/9.

Let F i = (f i
1, f

i
2, f

i
3) denote the ith solution of the Pareto-optimal front,

where f i
1, f

i
2 and f i

3 represent the values of objective 1, objective 2 and ob-
jective 3, respectively, i ∈ I = {1, 2, · · · , k} and k is the number of solutions
of the Pareto-optimal front. Firstly, the Pareto-optimal solutions are sorted
based on the order that the value of the most important objective is increas-
ing. If the values of the most important objective are equal, the solutions
are sorted according to the order that the value of the sub-important ob-
jective is increasing, etc. For example, if w1 ≥ w2 ≥ w3, the final rank of
Pareto-optimal solutions satisfies⎧⎨

⎩
f j
1 ≤ f j+1

1

f j
2 ≤ f j+1

2 if f j
1 = f j+1

1

f j
3 ≤ f j+1

3 if f j
1 = f j+1

1 and f j
2 = f j+1

2

(12)

for any j ∈ {1, 2, · · · , k − 1}. Then, the final decision F ∗ = (f ∗
1 , f

∗
2 , f

∗
3 ) is

made taking into account the rank of the Pareto-optimal solutions and the
following rule. The solution with a smaller rank number, i.e., with a smaller
value of the more important objective, is chosen to be the final optimal
solution unless the sacrifice of this objective can bring sufficient improvement
to the sub-important objective. For example, if two objectives are considered
with w1 = 0.8 and w2 = 0.2, i.e., objective 1 is four times more important
than objective 2, the solution with a smaller value of objective 1 is preferred.
However, if 1% of the sacrifice of objective 1 can bring greater than 4% of
an improvement to objective 2, the sacrifice of objective 1 brings sufficient
improvement to objective 2 and the solution with the bigger objective 1 and
smaller objective 2 is chosen.

The procedure for the final decision making based on the obtained rank
of the Pareto-optimal solutions is

Step 1 F ∗ = F 1, i = 2

Step 2 if {f i
1 > f ∗

1 and (13)}
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{
(f∗

2−f i
2)/(f

max
2 −fmin

2 )

(f i
1−f∗

1 )/(f
max
1 −fmin

1 )
> w1

w2

f ∗
3 ≥ f i

3

(13)

then F ∗ = F i

Step 3 if {f i
1 = f ∗

1 and (14)}
(f ∗

3 − f i
3)/(f

max
3 − fmin

3 )

(f i
2 − f ∗

2 )/(f
max
2 − fmin

2 )
>

w2

w3
(14)

then F ∗ = F i

Step 4 i = i+ 1 and go to Step 2

where fmin
1 = mini∈I f i

1, f
min
2 = mini∈I f i

2, f
min
3 = mini∈I f i

3, f
max
1 = maxi∈I f i

1,
fmax
2 = maxi∈I f i

2 and fmax
3 = maxi∈I f i

3. Step 2 shows that when three ob-
jectives are considered, in addition to the requirement that any sacrifice of
objective 1 brings sufficient improvement to objective 2, it is essential that
objective 3 does not get worse, then the solution with bigger value of objec-
tive 1 is preferred. The start time slots of appliances corresponding to F ∗

will be adopted and the EMC will automatically control the home appliances
according to the obtained start time slots.

It is noted that the Pareto approach does not depend on the importance
factors and the importance factors are taken into account for the final decision
making among the Pareto-optimal solutions. This is different from the Weigh
approach which relates the importance factors to the values of the objectives,
whilst the proposed method of decision making connects the importance
factors with the variations of the objectives.

6. Simulation results

In this section, the Pareto approach is compared with the Weigh approach
and the Constraint approach in the performance of solving the MODSS and
the relationships between the operational safety and other objectives are
investigated. Eight typical appliances are considered and some appliances
are used more than once in a day, and the parameters of the appliances are
shown in Table 1 [6, 27]. It is assumed that the users’ at-home status and
awake status are as shown in Fig. 5. The day-ahead real-time pricing data
on August 3rd 2012 is adopted from the Ameren Illinois Power Company
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Table 1: Parameters of appliances

Appliance OTI LOT Power (kW)
Rice cooker1 1-40 2 0.5
Rice cooker2 56-65 2 0.5
Rice cooker3 71-90 2 0.5
Water heater 86-105 3 1.5
Dishwasher 101-120 2 0.6

Washing machine 1-60 5 0.38
Electric kettle1 1-40 1 1.5
Electric kettle2 81-90 1 1.5
Clothes dryer 71-90 5 0.8

Oven 71-90 3 1.9
Electric radiator1 56-65 5 1.8
Electric radiator2 81-110 20 1.8

∗1, ∗2 and ∗3 denote that appliance ∗ is used three times

within different OTIs in one day.

[28]. Both the parameters ρa and σa, a = {1, 2, · · · , n}, are assumed to be 2
[6, 7]. It is noted that the users’ at-home status and awake status in Fig. 5
are illustrated to show how the users’ statuses are taken into account in the
appliances’ operational safety, and the at-home status and the awake status
are individually defined by users.

6.1. Comparison between the Pareto approach and the Weigh approach

The Pareto approach is compared with the Weigh approach under three
situations: minimizations of operational unsafety and electricity cost, mini-
mizations of operational unsafety and operational delay, and minimizations
of all the three objectives. The maximum generation number was set to be
200 for the NSGA-II of the Pareto approach under the three situations, and
the population sizes were set to be 100 and 1000 for the situation consider-
ing two objectives and the situation considering three objectives, respectively
[24]. For the GA of the Weigh approach, the maximum generation number
was 200 and the population size was set to be 2000 for all the situations [29].

6.1.1. Considering operational unsafety and electricity cost

In this case, F (X) = (f1(X), f2(X)) for the Pareto approach, and w3 = 0,
w1 + w2 = 1 for the Weigh approach. Fig. 6 shows the objective values of
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Fig. 5: Users?at-home status, awake status and electricity price during the day

optimal solutions obtained through the Pareto approach and the Weigh ap-
proach taking into account the operational unsafety and the electricity cost.
The Pareto-optimal front shows that the operational unsafety is reduced with
the sacrifice of the electricity cost. The Weigh approach proposes only an
optimal solution based on a certain set of importance factors of multiple
objectives provided by users while the Pareto approach provides a set of op-
timal solutions. The multiple solutions of the Weigh approach in Fig. 6
are obtained with different sets of importance factors, and the operational
unsafety and the electricity cost of these solutions with respect to the im-
portance factor w1 are shown in Fig. 7. The Pareto approach clearly shows
the relationship between the sacrifice of one objective and the improvement
of the other objective through the Pareto-optimal front, which is not pre-
sented by the Weigh approach with a single solution. For example, when
the electricity cost increases from 58.29 cents to 58.37 cents, the operational
unsafety drops from 15.52 to 14.85, and a 0.14% in the increase of the elec-
tricity cost results in a 4.32% reduction in the operational unsafety. The
relationship between the sacrifice of one objective and the improvement of
the other objective is clearly shown through the Pareto-optimal front, which

17



58 59 60 61 62 63 64 65
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

Electricity cost (cents)

O
pe

ra
tio

na
l u

ns
af

et
y

 

 
Pareto approach
Weigh approach

Fig. 6: Comparison between the Pareto approach and the Weigh approach considering the
operational unsafety and the electricity cost

provides more information to make the decision of demand side scheduling.
It is noted that though the Weigh approach can provide a set of optimal

solutions through multiple runs with different sets of importance factors, the
Pareto approach provides the Pareto-optimal front with a single run. More-
over, the Pareto approach deals with noncommensurable objectives directly,
and these objectives need transforming to be commensurable through the
Weigh approach.

6.1.2. Considering operational unsafety and operational delay

In this case, F (X) = (f1(X), f3(X)) for the Pareto approach, and w2 = 0,
w1+w3 = 1 for the Weigh approach. Fig. 8 shows the objective values of opti-
mal solutions obtained through the Pareto approach and the Weigh approach
taking into account the operational unsafety and the operational delay. The
Pareto-optimal front shows that the operational unsafety is reduced with the
sacrifice of the operational delay, which is not presented by the Weigh ap-
proach with a single solution. The multiple solutions of the Weigh approach
in Fig. 8 are obtained with different sets of importance factors. The op-
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Fig. 7: Operational unsafety and electricity cost with respect to w1
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Fig. 8: Comparison between the Pareto approach and the Weigh approach considering the
operational unsafety and the operational delay
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erational unsafety and the operational delay of these solutions with respect
to the importance factor w1 are similar as the operational unsafety and the
electricity cost in Fig. 7, thus they are not presented.

6.1.3. Considering operational unsafety, electricity cost and operational delay

In this case, F (X) = (f1(X), f2(X), f3(X)) for the Pareto approach, and
w1 + w2 + w3 = 1 for the Weigh approach. Fig. 9 and Fig. 10 show the
objective values of solutions obtained through the Pareto approach and the
Weigh approach taking into account the operational unsafety, the electricity
cost and the operational delay. 100 cases of the Weigh approach are il-
lustrated with the importance factors w1, w2, w3 randomly chosen satisfying
w1 + w2 + w3 = 1. Fig. 10 is the top view of Fig. 9, and the color gradients
indicate different values of the electricity cost. The Pareto approach provides
a set of optimal solutions with the relationships among the three objectives
presented while the Weigh approach only obtains one solution. The multiple
solutions of the Weigh approach in Fig. 9 and Fig. 10 are obtained with
different sets of importance factors. It can be seen from Fig. 9 and Fig. 10
that the operational unsafety and the operational delay are reduced with the
sacrifice of the electricity cost as the electricity cost increases in the decreas-
ing directions of the operational unsafety and the operational delay. The
relationship between the operational unsafety and the operational delay is
shown in Fig. 9 and Fig. 10. With the electricity cost fixed, the operational
unsafety decreases in the increasing direction of the operational delay, which
indicates that the operational safety is improved with the sacrifice of the
operational delay.

6.2. Comparison between the Pareto approach and the Constraint approach

In this section, the Pareto approach is compared with the Constraint
approach with the consideration of the operational safety, together with one
or both of the electricity cost and the operational delay. The maximum
generation number and the population size of the NSGA-II for the Pareto
approach and those of the GA for the Constraint approach are set as the same
in the comparison between the Pareto approach and the Weigh approach.

6.2.1. Considering operational unsafety and electricity cost

In this case, F (X) = (f1(X), f2(X)) for the Pareto approach, and the
two situations, the minimization of the operational unsafety with the con-
straint of the electricity cost and the minimization of the electricity cost with
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Fig. 9: Comparison between the Pareto approach and the Weigh approach considering the
operational unsafety, the electricity cost and the operational delay
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Fig. 10: Top view of comparison between the Pareto approach and the Weigh approach
considering the operational unsafety, the electricity cost and the operational delay
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Fig. 11: Comparison between the Pareto approach and the Constraint approach consider-
ing the operational unsafety and the electricity cost

the constraint of the operational unsafety are considered for the Constraint
approach. Fig. 11 shows the comparison between the Pareto approach and
the Constraint approach taking into account the operational unsafety and
the electricity cost. Blue stars denote the Pareto approach in Fig. 11, red
squares represent the results of the Constraint approach where the opera-
tional unsafety is minimized under the condition that the deviation of the
electricity cost from its optimal value is within a certain range, and red trian-
gles denote the results of the Constraint approach where the electricity cost
is minimized with the constraint of the operational unsafety. The operational
unsafety and the electricity cost with respect to the constraint factor η2 in
the first situation of the Constraint approach are shown in Fig. 12. The
situation where the operational unsafety is minimized with the constraint of
the electricity cost is similar to the situation where the electricity cost is min-
imized with the constraint of the operational unsafety, and the simulation
results of the first situation are presented as an example.

The Pareto approach provides a set of optimal solutions while the Con-
straint approach proposes only an optimal solution and the relationship be-
tween the operational safety and the electricity cost is presented through
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Fig. 12: Operational unsafety and electricity cost with respect to η2

the Pareto approach. The operational safety is improved with the sacrifice
of the electricity cost. It is noted that multiple solutions of the Constraint
approach shown in Fig. 11 are obtained with different constraints and con-
straint factors. Moreover, it can be seen from Fig. 11 that some solutions
proposed via the Constraint approach are in the upper right of the Pareto-
optimal front, i.e., these solutions can be dominated by solutions proposed
via the Pareto approach since the Constraint approach does not optimize the
objectives in the constraints as long as the deviations of these objectives from
their corresponding optimal values are within certain ranges. For example,
the operational unsafety is minimized with the constraint of the electricity
cost, i.e., minX f1(X), subject to f2(X) ≤ (1 + η2)f2. For the two sets of
appliances’ start time slots X1 and X2, it is assumed that f1(X1) = f1(X2),
f2(X1) ≤ (1 + η2)f2, f2(X2) ≤ (1 + η2)f2, and f2(X1) < f2(X2). The Con-
straint approach does not guarantee X1 is selected with priority even though
f1(X1) = f1(X2) and f2(X1) < f2(X2).

6.2.2. Considering operational unsafety and operational delay

In this case, F (X) = (f1(X), f3(X)) for the Pareto approach, and the two
situations, the minimization of the operational unsafety with the constraint
of the operational delay and the minimization of the operational delay with
the constraint of the operational unsafety are considered for the Constraint
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Fig. 13: Comparison between the Pareto approach and the Constraint approach consider-
ing the operational unsafety and the operational delay

approach. Fig. 13 shows the comparison between the Pareto approach and
the Constraint approach taking into account the operational unsafety and
the operational delay. Blue stars denote the Pareto approach in Fig. 13, red
squares represent the results of the Constraint approach where the opera-
tional unsafety is minimized under the condition that the deviation of the
operational delay from its optimal value is within a certain range, and red
triangles denote the results of the Constraint approach where the operational
delay is minimized with the constraint of the operational unsafety. It can be
seen from Fig. 13 that the operational safety is improved with the sacrifice
of the operational delay and that some solutions of the Constraint approach
are dominated by solutions proposed via the Pareto approach. As the oper-
ational unsafety and the operational delay of the Constraint approach with
respect to the constraint factor η3 are similar as the operational unsafety and
the electricity cost shown in Fig. 12, thus they are not presented.

6.2.3. Considering operational unsafety, electricity cost and operational delay

In this case, F (X) = (f1(X), f2(X), f3(X)) for the Pareto approach, and
three situations, where one of the three objectives is minimized with the con-
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Fig. 14: Comparison between the Pareto approach and the Constraint approach consider-
ing the operational unsafety, the electricity cost and the operational delay

straints of the other two objectives, are taken into account for the Constraint
approach. Fig. 14 and Fig. 15 show the objective values of optimal solu-
tions obtained by the Pareto approach and the Constraint approach taking
into account the operational unsafety, the electricity cost and the operational
delay. Squares, triangles and diamonds denote the results of the Constraint
approach where the operational unsafety, the operational delay and the elec-
tricity cost are minimized with the constraints of the other two objectives,
respectively. For each situation of the Constraint approach, 33 cases are il-
lustrated where the constraint factors are randomly chosen within [0, 0.3].
Fig. 15 is the top view of Fig. 14, where the color gradients indicate the
different electricity costs.

The Pareto approach provides a set of optimal solutions while the Con-
straint approach proposes only an optimal solution, and the multiple solu-
tions of the Constraint approach in Fig. 14 and Fig. 15 are obtained with
different constraints and constraint factors. It can be seen from Fig. 14
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Fig. 15: Top view of comparison between the Pareto approach and the Constraint approach
considering the operational unsafety, the electricity cost and the operational delay
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and Fig. 15 that the operational unsafety and the operational delay are
reduced with the sacrifice of the electricity cost and that the operational
safety is improved with the sacrifice of the operational delay. Moreover, Fig.
15 shows that some solutions of the Constraint approach can be dominated
by solutions proposed by the Pareto approach as the electricity cost of the
Constraint approach is larger than that of the Pareto approach.

6.3. Final decision making of the Pareto approach

Through the proposed method of decision making of the Pareto approach,
the final solution obtained is illustrated under the situation that the oper-
ational safety is considered as the most important objective, the electric-
ity cost as the second important and the operational delay the last, i.e.,
w1 = 11/18, w2 = 5/18 and w3 = 1/9, and this solution is compared with the
solution proposed by the Weigh approach with the same importance factors.
As shown in Table 2, the operational unsafety, the electricity cost and the
operational delay of the Pareto approach are 12.11, 59.99 cents and 16.59,
respectively, and this solution is the one highlighted with a black circle shown
in Fig. 9, corresponding to the solution in the blue hollow square in Fig. 10,
while the solution proposed by the Weigh approach is the one in the black
square in Fig. 9 with operational unsafety 12.11, electricity cost 61.89 cents
and operational delay 15.44, corresponding to the solution in the solid light
blue square in Fig. 10. Compared with the solution based on the Pareto
approach, the operational unsafety is the same, the electricity cost is greater
and the operational delay is less for the solution of the Weigh approach. The
relationship between the sacrifice of the electricity cost and the improvement
of the operational delay is presented according to (14)

(fP
3 −fW

3 )/(fmax
3 −fmin

3 )

(fW
2 −fP

2 )/(fmax
2 −fmin

2 )

= (16.59−15.44)/(18.96−12.00)
(61.89−59.99)/(75.98−58.29)

= 1.54

(15)

where fP
2 and fP

3 are the electricity cost and the operational delay of the
Pareto approach, respectively, fW

2 and fW
3 are the cost and the operational

delay of the Weigh approach, and fmax
2 = 75.98, fmin

2 = 58.29, fmax
3 =

18.96, fmin
3 = 12.00 are the bounds of electricity cost and operational de-

lay. The electricity cost is 2.50 times more important than the operational
delay and 1.54 < 2.50 shows that the sacrifice of the electricity cost does not
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Table 2: Comparison of final solution between

the Pareto approach and the Weigh approach

Approach
Operational
unsafety

Electricity cost
(cents)

Operational
delay

Pareto approach 12.11 59.99 16.59
Weigh approach 12.11 61.89 15.44

bring sufficient improvement of the operational delay comparing the solution
of the Weigh approach with that of the Pareto approach. Therefore, the
solution based on the Pareto approach with the same operational unsafety
and reduced electricity cost is preferred according to the proposed method
of final decision making. The start time slots of the appliances in Table 1
are 1, 57, 71, 95, 101, 38, 1, 86, 86, 86, 57 and 91, respectively, corresponding to
the solution based on the Pareto approach.

With the development of the information and communication technol-
ogy, it will become more convenient for users to acquire the electricity price
information from the utility company [7], and the cost of the energy man-
agement system including the EMC, the home area network and smart home
appliances will be decreasing [30]. Moreover, the proposed approach is to
improve an installed energy management system via upgrading scheduling
programming of the EMC, thus no extra hardware cost is needed. After the
EMC works out and updates the energy consumption schedules based on
the electricity price and users’ demands and status, the home appliances will
be automatically controlled according to the obtained schedules through the
home area network.

7. Conclusions

In this paper, the operational safety of appliances has been considered
during the demand side scheduling along with the electricity cost and the
operational delay. The Pareto approach is adopted to solve the problem
of MODSS and to present the relationships between the operational safety
and the other two objectives. Then this approach has been compared with
the Weigh approach and the Constraint approach in the performance of
multi-objective optimization. Simulation results have demonstrated that the
Pareto approach clearly presents the relationships between the operational
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safety and the other two objectives through the Pareto-optimal front com-
pared with the Weigh approach. The operational safety is improved with the
sacrifice of the electricity cost and the operational delay. Compared with the
Constraint approach, the solutions proposed by the Pareto approach are bet-
ter. Furthermore, a method of making scheduling decision has been proposed
based on the Pareto approach with the consideration of the relationships
among multiple objectives. Taking into account the appliances’ operational
safety, the Pareto approach has proved effective in presenting comprehensive
optimal solutions to the multi-objective demand side scheduling.
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