128 research outputs found

    Exploiting Query’s Temporal Patterns for Query Autocompletion

    Get PDF
    Query autocompletion (QAC) is a common interactive feature of web search engines. It aims at assisting users to formulate queries and avoiding spelling mistakes by presenting them with a list of query completions as soon as they start typing in the search box. Existing QAC models mostly rank the query completions by their past popularity collected in the query logs. For some queries, their popularity exhibits relatively stable or periodic behavior while others may experience a sudden rise in their query popularity. Current time-sensitive QAC models focus on either periodicity or recency and are unable to respond swiftly to such sudden rise, resulting in a less optimal QAC performance. In this paper, we propose a hybrid QAC model that considers two temporal patterns of query’s popularity, that is, periodicity and burst trend. In detail, we first employ the Discrete Fourier Transform (DFT) to identify the periodicity of a query’s popularity, by which we forecast its future popularity. Then the burst trend of query’s popularity is detected and incorporated into the hybrid model with its cyclic behavior. Extensive experiments on a large, real-world query log dataset infer that modeling the temporal patterns of query popularity in the form of its periodicity and its burst trend can significantly improve the effectiveness of ranking query completions

    Evaluation of MicroRNA 125b as a potential biomarker for postmenopausal osteoporosis

    Get PDF
    Purpose: To identify significant dysregulated miRNAs in postmenopausal  osteoporosis in Chinese women and to test whether any of these miRNAs have diagnostic potential as circulatory biomarkers for postmenopausal osteoporosis.Methods: Thirty osteoporotic patients and 30 non-osteoporotic healthy individuals were recruited, and blood and bone tissue samples were collected from them. miRNA expression profiling and quantitative real-time polymerase chain reaction  (qRT-PCR) were used to identify and substantiate dysregulated miRNAs in blood sera and bone tissue from osteoporotic patients. Receiver operating characteristic curve (ROC) analysis was carried out to assess the diagnostic potential of significantly dysregulated miRNAs.Results: Based on profiling and qRT-PCR, miR-125b, miR-30 and miR-5914 were significantly upregulated in the blood sera and bone tissues of patients with postmenopausal osteoporosis. In all the experiments carried out, miR-125b showed the highest levels of upregulation both in the blood sera and bone tissue compared to other upregulated miRNAs in osteoporotic patients. ROC analysis indicate that the AUC of miR-125b was the highest amongst the upregulated miRNAs.Conclusion: miR-125b is the highest significantly upregulated miRNA in  postmenopausal osteoporosis. Furthermore, circulating miR-125b has the potential of a non-invasive biomarker for postmenopausal osteoporosis.Keywords: Postmenopausal osteoporosis, Profiling, Up-regulation, miR-125b,  Biomarke

    Initiation characteristics of wedge-induced oblique detonation wave in a stoichiometric hydrogen-air mixture

    Get PDF
    The initiation features of two-dimensional, oblique detonations from a wedge in a stoichiometric hydrogen-air mixture are investigated via numerical simulations using the reactive Euler equations with detailed chemistry. A parametric study is performed to analyze the effect of inflow pressure P0, and Mach number M0 on the initiation structure and length. The present numerical results demonstrate that the two transition patterns, i.e., an abrupt transition from a multi-wave point connecting the oblique shock and the detonation surface and a smooth transition via a curved shock, depend strongly on the inflow Mach number, while the inflow pressure is found to have little effect on the oblique shock-to-detonation transition type. The present results also reveal a slightly more complex structure of abrupt transition type in the case of M0 = 7.0, consisting of various chemical and gasdynamic processes in the shocked gas mixtures. The present results show quantitatively that the initiation length decreases with increasing M0, primarily due to the increase of post-shock temperature. Furthermore, the effect of M0 on initiation length is independent of P0, but given the same M0, the initiation length is found to be inversely proportional to P0. Theoretical analysis based on the constant volume combustion (CVC) theory is also performed, and the results are close to the numerical simulations in the case of high M0 regardless of P0, demonstrating that the post-oblique-shock condition, i.e., post-shock temperature, is the key parameter affecting the initiation. At decreasing M0, the CVC theory breaks down, suggesting a switch from chemical kinetics-controlled to a wave-controlled gasdynamic process. For high inflow pressure P0 at decreasing M0, the CVC theoretical estimations depart from numerical results faster than those of low P0, due to the presence of the non-monotonic effects of chemical kinetic limits in hydrogen oxidation at high pressure

    Eau

    Get PDF
    Modeling aluminum (Al) particle-air detonation is extremely difficult because the combustion is shock-induced, and there are multi-phase heat release and transfer in supersonic flows. Existing models typically use simplified combustion to reproduce the detonation velocity, which introduces many unresolved problems. The hybrid combustion model, coupling both the diffused- and kinetics-controlled combustion, is proposed recently, and then improved to include the effects of realistic heat capacities dependent on the particle temperature. In the present study, 2D cellular Al particle-air detonations are simulated with the realistic heat capacity model and its effects on the detonation featured parameters, such as the detonation velocity and cell width, are analyzed. Numerical results show that cell width increases as particle diameter increases, similarly to the trend observed with the original model, but the cell width is underestimated without using the realistic heat capacities. Further analysis is performed by averaging the 2D cellular detonations to quasi-1D, demonstrating that the length scale of quasi-1D detonation is larger than that of truly 1D model, similar to gaseous detonations

    Initiation structure of oblique detonation waves behind conical shocks

    Get PDF
    The understanding of oblique detonation dynamics has both inherent basic research value for high-speed compressible reacting flow and propulsion application in hypersonic aerospace systems. In this study, the oblique detonation structures formed by semi-infinite cones are investigated numerically by solving the unsteady, two-dimensional axisymmetric Euler equations with a one-step irreversible Arrhenius reaction model. The present simulation results show that a novel wave structure, featured by two distinct points where there is close-coupling between the shock and combustion front, is depicted when either the cone angle or incident Mach number is reduced. This structure is analyzed by examining the variation of the reaction length scale and comparing the flow field with that of planar, wedge-induced oblique detonations. Further simulations are performed to study the effects of chemical length scale and activation energy, which are both found to influence the formation of this novel structure. The initiation mechanism behind the conical shock is discussed to investigate the interplay between the effect of the Taylor-Maccoll flow, front curvature, and energy releases from the chemical reaction in conical oblique detonations. The observed flow fields are interpreted by means of the energetic limit as in the critical regime for initiation of detonation

    Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model

    Get PDF
    Oblique detonations induced by two-dimensional, semi-infinite wedges are simulated by solving numerically the reactive Euler equations with a two-step induction-reaction kinetic model. Previous results obtained with other models have demonstrated that for the low inflow Mach number M0 regime past a critical value, the wave in the shocked gas changes from an oblique reactive wave front into a secondary oblique detonation wave (ODW). The present numerical results not only confirm the existence of such critical phenomenon, but also indicate that the structural shift is induced by the variation of the main ODW front which becomes sensitive to M0 near a critical value. Below the critical M0,cr, oscillations of the initiation structure are observed and become severe with further decrease of M0. For low M0 cases, the non-decaying oscillation of the initiation structure exists after a sufficiently long-time computation, suggesting the quasi-steady balance of initiation wave systems. By varying the heat release rate controlled by kR, the pre-exponential factor of the second reaction step, the morphology of initiation structures does not vary for M0 = 10 cases but varies for M0 = 9 cases, demonstrating that the effects of heat release rate become more prominent when M0 decreases. The instability parameter χ is introduced to quantify the numerical results. Although χ cannot reveal the detailed mechanism of the structural shift, a linear relation between χ and kR exists at the critical condition, providing an empirical criterion to predict the structural variation of the initiation structure

    A Review of Software Reliability Testing Techniques

    Get PDF
    In the era of intelligent systems, the safety and reliability of software have received more attention. Software reliability testing is a significant method to ensure reliability, safety and quality of software. The intelligent software technology has not only offered new opportunities but also posed challenges to software reliability technology. The focus of this paper is to explore the software reliability testing technology under the impact of intelligent software technology. In this study, the basic theories of traditional software and intelligent software reliability testing were investigated via related previous works, and a general software reliability testing framework was established. Then, the technologies of software reliability testing were analyzed, including reliability modeling, test case generation, reliability evaluation, testing criteria and testing methods. Finally, the challenges and opportunities of software reliability testing technology were discussed at the end of this paper
    corecore