
Research Article
Exploiting Query’s Temporal Patterns for
Query Autocompletion

Danyang Jiang, Honghui Chen, and Fei Cai

Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Hunan, China

Correspondence should be addressed to Danyang Jiang; danyangjiang@nudt.edu.cn

Received 18 September 2016; Accepted 5 March 2017; Published 23 March 2017

Academic Editor: Emilio Insfran

Copyright © 2017 Danyang Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Query autocompletion (QAC) is a common interactive feature of web search engines. It aims at assisting users to formulate queries
and avoiding spelling mistakes by presenting them with a list of query completions as soon as they start typing in the search box.
Existing QAC models mostly rank the query completions by their past popularity collected in the query logs. For some queries,
their popularity exhibits relatively stable or periodic behavior while others may experience a sudden rise in their query popularity.
Current time-sensitive QAC models focus on either periodicity or recency and are unable to respond swiftly to such sudden rise,
resulting in a less optimal QACperformance. In this paper, we propose a hybridQACmodel that considers two temporal patterns of
query’s popularity, that is, periodicity and burst trend. In detail, we first employ theDiscrete Fourier Transform (DFT) to identify the
periodicity of a query’s popularity, by which we forecast its future popularity. Then the burst trend of query’s popularity is detected
and incorporated into the hybridmodel with its cyclic behavior. Extensive experiments on a large, real-world query log dataset infer
that modeling the temporal patterns of query popularity in the form of its periodicity and its burst trend can significantly improve
the effectiveness of ranking query completions.

1. Introduction

Query autocompletion (QAC) provides a list of queries to
search engine users from the moment that they start entering
a query. This popular feature of search engines is intended to
reduce the physical and cognitive effort when formulating a
query [1]. As illustrated in Figure 1, upon a user’s keystroke,
QAC provides a ranked list of query completions that strictly
start with the typed prefix. The user can submit a completed
query by clicking any of them or continue to type the entire
query. Typically, the query prefix tends to be short and
ambiguous, making it difficult to capture user’s search intent
and to recommend relevant queries. Hence, the primary
objective of a QAC system is to satisfy the average user typing
the same prefix [1], where the most common and effective
approach is introduced to exploit the query logs and rank
the query completions according to their past popularity
[2]. Although such approach can generate satisfactory query
completion lists on average, it is far from optimal since it fails
to take into account temporal patterns, which can potentially
provide valuable signals to generate better QAC rankings.

Although the query’s recency has been taken into account in a
QAC ranking model [1], the performance is still dissatisfying
because this model assumes that query’s future popularity
distributionwill remain the same as that previously observed.
In contrast, in this paper, two temporal patterns of query’s
popularity will be exploited by considering both periodicity
and burst trend.

As we know, for some queries, their popularity keeps rel-
atively stable over time (e.g.,Google,Amazon, andWikipedia)
or exhibits a periodic pattern (e.g., Christmas, Mother’s Day,
and movie); other queries may experience a sudden rise in
popularity that is unexpected by previous observations, for
example, Belgium terrorist attack. Typically this popularity
surge is precipitated by some ongoing real-life events or
breaking news that attract sudden peaks in public attention.
We define such a sharp rise in query popularity as burst.
Therefore, the QAC system should respond quickly to the
unexpected spikes in query popularity and rank query com-
pletions accordingly. Previous works [3, 4] mainly focus on
detecting the cyclic pattern of query popularity and rerank
completions by their forecasted popularity, disregarding the

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 7490879, 8 pages
https://doi.org/10.1155/2017/7490879

https://doi.org/10.1155/2017/7490879

2 Mathematical Problems in Engineering

Pre�x

QAC
list

Figure 1: Illustration of QAC in a commercial search engine for the
query “music download.”

burst pattern of aperiodic queries. Our work tends to remedy
the aforementioned problems.

In this paper, we propose a time-sensitive hybrid QAC
ranking model that combines the periodicity and the burst
trend of query popularity. We first employ the Discrete
Fourier Transform (DFT) to detect the periodicity of a query’s
past popularity to forecast its future popularity by which we
can produce an initial ranking of query completions. We
then extend it by examining the burst trend of each query’s
popularity to generate a final ranking of query completions.
The empirical experiments on a real-world query log dataset
show that our proposal can improve the ranking performance
over the state-of-the-art time-sensitiveQACbaseline in terms
of Mean Reciprocal Rank (MRR) by 3.5%.

We enumerate our main contributions as follows:

(1) We tackle the challenge of QAC in a novel way by
considering both the periodicity and the burst trend
of query popularity.

(2) We present a novel method to predict a query’s future
popularity which results in a better ranking of query
completions.

(3) We analyze the effectiveness of our hybrid QAC
model and find that it can significantly outperform
the state-of-the-art time-sensitive QAC method in
terms of MRR.

2. Related Work

2.1. Query Autocompletion. Generally, a QAC process con-
sists of two steps: filtering and ranking [4, 5]. The first step
is to generate matched query completions to user’s input
prefix and store them in an efficient indexing data structure
such as tries for fast lookup. The second step is to sort these
completions based on various ranking signals. To obtain the
query completions in the filtering step, most QAC methods
rely on the query logs [1, 2, 4, 5]. As a complement, Bhatia
et al. [6] propose an unsupervised probabilistic approach
to generate query completions from the document corpus
instead of the query logs by selecting terms and phrases
that are highly correlated to user’s input prefix. In addition,
in order to overcome the problem of mistyping, Chaudhuri
and Kaushik [7] capture the typing errors by examining
the edit distance and design an error-tolerant QAC strategy.
Due to an enormous volume of query completions, space-
efficiency is also important in the filtering process. Hsu and
Ottaviano [8] present three indexing data structures with

different space/time/complexity tradeoffs to deal with such
efficiency related problems.

In contrast, in the ranking step, the most simple and
straightforward ranking approach is based on query’s past
popularity, which is referred to as the Most Popular Comple-
tion (MPC) model [2]:

MPC (𝑝) = arg max
𝑞∈𝐶(𝑝)

𝑤 (𝑞) , 𝑤 (𝑞) = 𝑓 (𝑞)
∑𝑖∈𝑄𝑓 (𝑖) , (1)

where 𝐶(𝑝) represents a set of query completions that match
the typed prefix 𝑝 and 𝑓(𝑞) is the past popularity of query 𝑞
in the search log𝑄.

Despite its straight-forwardness, MPC ignores the tem-
poral patterns of query popularity and generates a uniform
list of query completions in every situation across various
searchers. Therefore, its performance is less than optimal.
Recent works have been focused on adding more detailed
information on query popularity into the ranking process to
extend the MPC model. Shokouhi and Radinsky [4] develop
a time-sensitive approach which orders query completions
by the forecasted popularity using the time-series analysis
of query history. In addition, Whiting and Jose [1] meliorate
(1) by computing 𝑤(𝑞) using the query popularity evidence
within time windows of recent 2–28 days.

Although the time-sensitive QAC approaches have been
studied in [1, 3, 4], they do not consider the burst trend of
short-term search history. Our proposal differs from these
previous works in that we try to combine the periodicity with
the burst trend to predict query’s future popularity, thereby
making full use of the temporal patterns of each query’s
popularity and generate effective QAC rankings.

2.2. Temporal Information Retrieval. As the content of the
web changes constantly over time, search engines are required
to offer the latest information to their users. Thus, exploiting
temporal information to improve the freshness as well as
the relevance of returned results has attracted extensive
attentions in recent years in the field of information retrieval.
Li and Croft [9] andDiaz and Jones [10] pioneer the temporal
language models by incorporating the document creation
dates into the language models. Due to the dynamic property
in web search, identifying changes in query popularity and
document content is an essential part in retrieval process.
Kulkarni et al. [11] classify query popularity changes and
examine the relationship between changes in query popular-
ity, search result content, and query intent. Elsas and Dumais
[12] propose two complementary methods to leverage doc-
ument content change characteristics in ranking algorithms
and show that considering document dynamics can yield
performance improvements on the relevance ranking of
navigational queries.

Understanding user’s temporal search intent and disam-
biguating time expressed in queries are also challenging.
Berberich et al. [13] inject the time information hidden in
queries into a query-likelihood model to rank documents.
Their work is extended by Kanhabua and Nørvåg [14] which
determines the time of implicit temporal queries using top-
ranked documents. In addition, Campos et al. [15] develop a

Mathematical Problems in Engineering 3

language-independent model that uses the temporal similar-
itymeasure to date implicit temporal query with time periods
from returned web snippets.

After aggregating the query occurrence within a fixed
time interval, the query volume can be seen as a time
sequence. Therefore, time-series analysis methods could be
applied to model the temporal changes in query popularity
and forecast the future trend. Shokouhi [16] uses time-series
decomposition techniques to identify seasonal queries. Vla-
chos et al. [17] build a time-series for each query and phrase
in the query logs and then detect significant periodicities
and bursts in sequences. Strizhevskaya et al. [3] measure the
accuracy of various time-series prediction algorithms on the
Yandex query log.

So far, the freshness and the recency have been taken
into account in web search tasks. Extensive works have been
done formining query’s underlying temporal patterns. To the
best of our knowledge, this is the first piece of work where
the periodicity and the burst trend of query popularity are
combined for the task of QAC.

3. Approach

In this section we first formulate the problem of query
autocompletion (QAC) and then describe our approach to
rank query completions based not only on the forecasted
popularity by periodicity but also on the short-term burst
trend.

We formally define the QAC problem as follows: given
a search log 𝑄 and a set of query completions 𝐶(𝑝) that
matches the typed prefix 𝑝, a QAC system is able to rank
query completions in 𝐶(𝑝) using ranking signals available
at time 𝑡. The query completions set is dynamically updated
with each new character entered by the user. The user can
choose any query completion in𝐶(𝑝) or type the entire query
if none of the completions satisfies his need.

3.1. Periodicity-Based QAC Model. To detect the periodic-
ity of a query’s popularity, we first aggregate the query
popularity within every day. By doing so, we can obtain a
time-series of occurrence counts at specific days for each
query. To detect the periodicity of a sequence, Fourier
transform and autocorrelation are commonly applied [18].
However, autocorrelation is not a good indicator for the true
period because the true period and its multipliers have high
autocorrelation values, which results in difficulties to use
a cutoff to determine the true period. In contrast, Fourier
transform is able to accurately detect short to medium length
periods. In addition, it has the merits of denoising and
compression [19]. Furthermore, our experimental dataset
collects 3-month query logs, in which queries at most possess
short to medium periodicities. Thus, we choose the Discrete
Fourier Transform (DFT) to find the periodic behavior of
each query’s popularity.

Fourier transform maps a signal of time into a new
signal whose argument is frequency. In the case of a periodic
sequence, the Fourier transform can be simplified to the
calculation of a discrete set of complex amplitudes, called
Fourier series coefficients. Let a time-series 𝑓(𝑞)𝑛, where 𝑛 =

1, 2, . . . , 𝑁, denote the history popularity of query 𝑞 in past
𝑁 days; the normalized DFT of 𝑓(𝑞)𝑛 is a series of complex
numbers 𝐹(𝑞)𝑘:

𝐹 (𝑞)𝑘 =
1

√𝑁
𝑁

∑
𝑛=1

𝑓 (𝑞)𝑛 𝑒−𝑗(2𝜋/𝑁)𝑘𝑛, 𝑘 = 1, 2, . . . , 𝑁. (2)

In order to find the underlying periodicity of𝑓(𝑞)𝑛 we use the
periodogram to estimate the power spectral density of this
sequence. The periodogram 𝑃(𝑘) is calculated as the squared
magnitude of each Fourier coefficient:

𝑃 (𝑘) = 󵄩󵄩󵄩󵄩𝐹 (𝑞)𝑘󵄩󵄩󵄩󵄩2 , 𝑘 = 1, 2, . . . , ⌊𝑁2 ⌋ , (3)

where ‖ ⋅ ‖ is the L2-norm. Due to the circular even symmetry
property of the sequence 𝑃(𝑘), we can detect the frequencies
that are at most half of the maximum signal frequency [20].
By assuming 𝑃(𝑘∗) is the maximum over all periodogram
values of other frequencies, the frequency 𝑘∗ has the strongest
power in signal.Mapping frequency back to the time domain,
frequency 𝑘∗ corresponds to a period of ⌈1/𝑘∗⌉ days which is
the most dominant periodicity of query 𝑞’s popularity.

We then use the detected periodicity of query 𝑞’s past
popularity to forecast its future popularity 𝑓(𝑞)𝑡+1 at time
𝑡+1 by averaging its recent𝑀 observations at preceding time
points 𝑡 + 1 − 1 ⋅ 𝑇, . . . , 𝑡 + 1 −𝑀 ⋅ 𝑇 in the log:

𝑓 (𝑞)𝑡+1 =
1
𝑀
𝑀

∑
𝑚=1

𝑓 (𝑞)𝑡+1−𝑚⋅𝑇 , (4)

where 𝑇 = ⌈1/𝑘∗⌉ denotes the periodicity of 𝑞’s popularity.
The QAC ranking model that uses 𝑓(𝑞)𝑡+1 to calculate 𝑤(𝑞)
in (1) is referred to as P-QAC hereinafter.

3.2. Burst Detection in Query Popularity. As the P-QAC
model ranks query completions by their predicted popularity
based on the periodicity, it ignores the burst trend of query’s
popularity. To mitigate this problem, we propose detecting
the short-termburst of query popularity and predict its future
trend at time 𝑡 + 1.

For discovering the burst trend in a time-series of query
popularity, Moving Average (MA) is commonly adopted [17,
21]. A burst emerges at time 𝑡+1when itsMA valueMA(𝑞)𝑡+1
exceeds the cutoff point 𝑐𝑢𝑡𝑜𝑓𝑓 and the amplitude of this
burst amp(𝑞)𝑡+1 can be formulated accordingly:

amp (𝑞)𝑡+1 = MA (𝑞)𝑡+1 − 𝑐𝑢𝑡𝑜𝑓𝑓. (5)

To limit reasonable fluctuation, 𝑐𝑢𝑡𝑜𝑓𝑓 is usually set to

𝑐𝑢𝑡𝑜𝑓𝑓 = 𝜇𝐴 + 𝛾 ⋅ 𝜎𝐴, (6)

where 𝜇𝐴 and 𝜎𝐴 are the mean and standard deviation of MA
sequence, respectively, and 𝛾 is a factor that smoothes out
noise and highlights evident peaks.

As to the calculation of MA(𝑞)𝑡+1 in a time sequence,
previous works [17, 21] employ Simple Moving Average
(SMA) which treats the contribution of each previous point

4 Mathematical Problems in Engineering

equally and computes the unweighted mean in a certain
sliding window for the whole sequence:

SMA (𝑞)𝑖 =
𝑖−1

∑
𝑛=𝑖−𝐿

1
𝐿 ⋅ 𝑓 (𝑞)𝑛 , 𝑖 = 𝐿 + 1, . . . , 𝑡 + 1, (7)

where 𝐿 represents the length of the sliding window and
𝑓(𝑞)𝑛, 𝑛 = 1, 2, . . . , 𝑡, is the time-series of query 𝑞’s popularity
prior to time 𝑡. However, in the field of temporal information
retrieval, it is widely accepted that the recent values of
a sequence matter more than the distant ones, and this
difference can be captured by introducing a decay function
on past values [14, 22]. Similarly, we introduce decay into
our method and identify burst based on the computation of
Weighted Moving Average (WMA):

WMA (𝑞)𝑖 =
𝑖−1

∑
𝑛=𝑖−𝐿

norm (𝜔𝑛) ⋅ 𝑓 (𝑞)𝑛 ,

𝑖 = 𝐿 + 1, . . . , 𝑡 + 1.
(8)

The normalized weight norm(𝜔𝑛) controls the weight
of each observation in the sliding window and ensures
∑𝑛 norm(𝜔𝑛) = 1. A decay function is introduced before
normalizing: 𝜔𝑛 = 𝐷𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒𝑖−𝑛, where 𝑖 − 𝑛 indicates
the time interval between the future day 𝑖 and the previous
day 𝑛. The length of sliding window may affect the overall
performance of QAC, which is to be discussed in our
experiments later.

3.3. Hybrid QAC Model. To consider a query’s long-term
and short-term search history when predicting its future
popularity, we propose a hybrid QAC ranking model that
combines both the periodic and the burst patterns of query’s
popularity. First, we use P-QAC to produce a ranked list of
completions𝐶(𝑝) to the input prefix𝑝.Then, we assign scores
𝑃score(𝑞) and 𝐵score(𝑞) to each completion based on the
forecasted popularity and the burst amplitude, respectively.
Finally, each completion is assigned to a final raking score
𝐻score(𝑞) which is a convex combination of 𝑃score(𝑞) and
𝐵score(𝑞):

𝐻score (𝑞) = (1 − 𝜆) ⋅ 𝑃score (𝑞) + 𝜆 ⋅ 𝐵score (𝑞) , (9)

where 0 ≤ 𝜆 ≤ 1 is a tradeoff controlling the weights of the
periodic score and the burst score.

In addition, the query completions in 𝐶(𝑝) may present
different burst amplitudes. For instance, some queries show
significant bursts in popularity and thus a uniform 𝜆 value
can not capture such evidences. Therefore, a flexible value
𝜆∗ which varies according to the burst amplitude of each
completion is introduced to replace 𝜆 in (9):

𝜆∗ = {
{
{
0 amp (𝑞)𝑡+1 < 𝜇𝐵,
𝜆 amp (𝑞)𝑡+1 ≥ 𝜇𝐵,

(10)

where 𝜇𝐵 is the mean of burst amplitudes of query comple-
tions in 𝐶(𝑝). Considering that 𝑃score(𝑞) and 𝐵score(𝑞) use

different units and scales, they need to be standardized before
being combined. 𝑃score(𝑞) is standardized as

𝑃score (𝑞) = 𝑓 (𝑞)𝑡+1 − 𝜇𝑃
𝜎𝑃 , (11)

where 𝜇𝑃 and 𝜎𝑃 are the mean and standard deviation of
forecasted popularity of completions in 𝐶(𝑝). 𝐵score(𝑞) is
standardized in a similar manner:

𝐵score (𝑞) = amp (𝑞)𝑡+1 − 𝜇𝐵
𝜎𝐵 , (12)

where 𝜎𝐵 is the standard deviation of burst amplitude
amp(𝑞)𝑡+1 of completions in 𝐶(𝑝). The details of our hybrid
QAC model are described in Algorithm 1. The hybrid QAC
model employs SMA or WMA to detect burst which is
referred to asH-SMA orH-WMA. In addition, a hybrid QAC
modelwith a fixed value𝜆used in (9) is denoted as𝜆-H-WMA
or 𝜆-H-SMA while a flexible value 𝜆∗ corresponds to 𝜆∗-H-
WMA.

4. Experimental Setup

This section gives the details of our experimental setup. First,
we list four research questions in Section 4.1 to guide our
experiments. Then, we describe the dataset and the experi-
mental parameters in Section 4.2. Finally, we briefly introduce
our evaluation metric and the baselines in Section 4.3.

4.1. Research Questions. We address the following research
questions in the remainder of the paper:

(RQ1) How does our periodicity-based QAC model P-QAC
compare against the state-of-the-art time-sensitive
QAC baseline? (See Section 5.1.)

(RQ2) Does the burst trend in our hybrid QAC model
help improve the performance over P-QAC? (See
Section 5.2.)

(RQ3) How are the impacts of scenarios for burst detection,
that is,WeightedMovingAverage (WMA) and Simple
Moving Average (SMA), on QAC performance? (See
Section 5.3.)

(RQ4) How does the length of sliding window affect the
ranking effectiveness of our hybrid QACmodel? (See
Section 5.4.)

4.2. Dataset and Parameters Settings

4.2.1. Dataset. We use the publicly available AOL query
log dataset [23] in our experiments. This dataset comprises
sampled queries submitted by anonymized users to the AOL
search engine from March 1, 2006, to May 31, 2006, which
is sufficiently large to ensure statistical significance. We
remove the navigational queries containing URL substring
(.com, .net, .org, .edu, .mil, .gov, www., and http) and dis-
card queries starting with special characters such as #, $, &,
and@.After cleaning, the dataset consists of 7,402,014 distinct

Mathematical Problems in Engineering 5

Input: Search log 𝑄; Query’s past popularity𝑓(𝑞)𝑛; Number of returned completions 𝐾; Length of sliding window 𝐿;
Output: Ranking list of top𝐾 completions of 𝑝;
(1) for each 𝑞 ∈ 𝑄 do
(2) 𝑇 ← DFT(𝑓(𝑞)𝑛);
(3) Calculate 𝑓(𝑞)𝑡+1 by (4);
(4) end for
(5) for each 𝑞 ∈ 𝑄 do
(6) for each prefix 𝑝 of 𝑞 do
(7) Return top𝐾 completions of 𝑝 (i.e., 𝐶(𝑝)) ranked by 𝑓(𝑞)𝑡+1;
(8) end for
(9) end for
(10) for each 𝑞 ∈ 𝐶(𝑞) do
(11) Calculate 𝑃score(𝑞) based on (11);
(12) Calculate amp(𝑞)𝑡+1 by (5);
(13) Calculate 𝐵score(𝑞) based on (12);
(14) Calculate𝐻score(𝑞) based on (9);
(15) end for
(16) Rerank 𝐶(𝑝) by𝐻score(𝑞);
(17) Return a re-ranked list of 𝐶(𝑝);

Algorithm 1: Hybrid QAC model.

queries submitted by 559,721 unique anonymous users. It is
then split into a training set and a test set with a ratio of
75%/25%. Traditional 𝑘-fold cross-validation is not applicable
to streaming settings since it would disorder the temporal
data sequence [24].Therefore, queries in the training set were
submitted before May 8, 2006.

Additionally, only queries appearing in both two sets
are kept. In total, there are 456,010 unique queries in the
training and test sets. Among them, 98,825 queries (22%)
show periodic behavior and near 208,362 queries (46%)
present burst behavior on average.

4.2.2. Parameters Settings. To smooth the popularity pre-
dicted by periodicity, that is, to determine the value of𝑀 in
(4), we average all pervious observations of query’s popularity
at each periodic day in the search log due to the limited length
of our dataset. Following [14], we use an exponential decay
function with𝐷𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒 = 0.5 in (8). Typical values for 𝛾 in
(6) are set to [1.5, 2]; we set 𝛾 = 1.8, as it performs best in our
trials. For obtaining an optimal tradeoff balance in our hybrid
QAC model, we set 𝜆 = 0.5 in (9), which has been proved to
be the best choice in a hybrid model [2]. In our experiments,
an initial ranking of top 20 query completions is returned and
to be reranked (i.e., 𝐾 = 20).

4.3. Evaluation Metric and Baselines

4.3.1. Evaluation Metric. As a ranking task, we employ the
Mean Reciprocal Rank (MRR) to evaluate the QAC per-
formance. MRR serves as a standard evaluation metric in
measuring the ranking accuracy of QAC task [1, 2, 5]. It is
the average reciprocal rank in the list of query completions:

MRR = 1
|𝑆|∑𝑞∈𝑆

1
rank𝑞

, (13)

where 𝑆 denotes the testing set and rank𝑞 is the rank of the
final submitted query 𝑞 in the query completion list. If no
matched query is found in the query completion list, 1/rank𝑞
is set to 0.

4.3.2. Baselines. To verify the effectiveness of our proposal,
the following competitive methods are adopted as baselines:
(1) the Most Popular Completion (MPC) model that ranks
query completions by their aggregated occurrences in the
whole training period [2]; we refer to this model as MPC-
ALL hereafter; (2) the state-of-the-art time-sensitive QAC
approach that ranks query completions according to their
past popularity within a fixed time window [1], which is
denoted asMPC-W.

5. Results and Discussion

In this section, we conduct comprehensive experiments
to compare the results of our proposal with those of the
baselines. Furthermore, we investigate the performance of
the hybrid QAC model under various settings, for example,
WMA, SMA, and changing sliding windows for burst detec-
tion.

5.1. Periodicity-Based QAC Model Performance. To answer
(RQ1), we report the MRR scores of QAC rankings generated
by MPC-ALL, MPC-W, and our periodicity-based QAC
model P-QAC at various lengths of prefix (#𝑝) in Table 1.

It can be seen from Table 1 that, for the MPC-W model,
it performs best using a 28-day time window for all cases
except that #𝑝 = 1, where MPC-Wwith a 7-day time window
achieves the highest MRR score. In addition, we observe that
MPC-W generally beats MPC-ALL as for most cases MPC-
W can receive higher MRR scores than MPC-ALL except the
case that at #𝑝 = 3MPC-ALL presents a slight improvement

6 Mathematical Problems in Engineering

Table 1: Performance of QAC models in terms of MRR on the AOL dataset for prefix 𝑝 consisting of 1–5 characters. The best results of
baselines and of all models at each row are italic and bold, respectively.

#𝑝 MPC-ALL MPC-W P-QAC
2 days 4 days 7 days 14 days 28 days

1 0.1097 0.0868 0.1066 0.1113 0.1110 0.1109 0.1115
2 0.2012 0.1780 0.1894 0.1952 0.1985 0.2029 0.2059
3 0.3211 0.2653 0.2792 0.3005 0.3114 0.3195 0.3287
4 0.4155 0.3625 0.3918 0.4028 0.4126 0.4214 0.4356
5 0.4951 0.4370 0.4691 0.4800 0.4913 0.5028 0.5163

against MPC-W in terms of MRR. It can be explained by the
fact that, by taking the query recency into account, MPC-W
is able to provide users with a list of newly popular query
completions that are not consistently popular.

In addition, P-QAC outperforms the baselines for all
prefix lengths in terms of MRR. In detail, for prefix lengths of
1–3 characters, P-QAC shows relatively small improvements
(under 1%) over the best performer of MPC-W; however,
as the prefix length gets longer, the improvement of P-QAC
against the best MPC-W (with a 28-day time window) is
enlarged. For instance, the MRR improvements come to near
1.5% at #𝑝 = 4 and 1.4% at #𝑝 = 5, respectively. This implies
that our proposal using the predicted query popularity based
on the periodicity can generate better QAC rankings than the
baselines. Consequently, the cyclic pattern of query history
popularity serves as a reliable ranking signal which can be
exploited to obtain better QAC rankings.

5.2. Hybrid QACModel Performance. In this section, we turn
to (RQ2) and examine the improvements of our hybrid QAC
models 𝜆-H-WMA and 𝜆∗-H-WMA against P-QAC. Both
the two hybrid models work under the setting of a 7-day
sliding window when detecting the burst. The evaluation
results of three different ranking models are included in
Figure 2.

In general, the empirical results indicate that the hybrid
QAC models 𝜆-H-WMA and 𝜆∗-H-WMA can outperform
P-QAC by a large margin for all prefix lengths. Specifically,
two most significant improvements of the hybrid models
against P-QAC are produced by 𝜆∗-H-WMA, which reports
an MRR improvement up to 2.5% and 2.2% at #𝑝 = 3 and
#𝑝 = 5, respectively. It could be due to the fact that a large
amount of queries exhibits burst trends in their popularity.
The outcomes verify our proposal that incorporates the burst
trend into the periodicity-based QAC model can further
exploit temporal patterns of query popularity for better
ranking performance. Compared to P-QAC, by combining
both the long-term periodicity and the short-term burst, 𝜆-
H-WMA and 𝜆∗-H-WMA can correctly capture the signal
of time-sensitivity in predicting query’s future popularity
and provide reasonable ranking lists of query completions to
searchers.

In addition, as to the two hybrid QAC models, 𝜆∗-
H-WMA beats 𝜆-H-WMA for all prefix lengths. Gener-
ally, 𝜆∗-H-WMA is more effective for longer prefixes than
𝜆-H-WMA. Although the improvement of 𝜆∗-H-WMA over

P-QAC
�휆-H-WMA
�휆∗-H-WMA

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

2 3 4 51

#p

Figure 2: Absolute MRR scores of P-QAC, 𝜆-H-WMA, and 𝜆∗-H-
WMA at prefix length #𝑝 = 1 to 5 on the AOL query log. Both 𝜆-H-
WMA and 𝜆∗-H-WMA use a sliding window of 7 days.

𝜆-H-WMA is relatively small with 0.34% at #𝑝 = 2, it is
further expanded to more than twice of that with 0.84%
under #𝑝 = 5. The comparing results confirm our proposal
that the flexible value 𝜆∗ can capture the variations in burst
amplitudes of query popularity and further improve QAC
rankings.

5.3. Impact of Decay Function. To answer (RQ3), we compare
the performance of 𝜆-H-SMA and 𝜆-H-WMA using a 7-day
sliding window at prefix length #𝑝 = 1 to 5. We report the
MRR scores in Table 2.

Clearly, from Table 2, we find that 𝜆-H-WMA outper-
forms 𝜆-H-SMA at all prefix lengths with slight improve-
ments in terms of MRR. In particular, for cases #𝑝 = 2 and
#𝑝 = 4, relatively obvious improvements in terms of MRR
are observed when comparing 𝜆-H-WMA against 𝜆-H-SMA,
reporting near 0.21% and 0.32% improvements, respectively.
It indicates that 𝜆-H-WMA can predict the user’s intended
query more accurately than 𝜆-H-SMA.

In addition, the experimental outcomes reported in
Table 2 infer that when detecting the burst of query

Mathematical Problems in Engineering 7

Table 2: MRR scores of 𝜆-H-SMA and 𝜆-H-WMA, tested at prefix
length #𝑝 = 1 to 5 on the AOL dataset.

#𝑝 𝜆-H-SMA 𝜆-H-WMA
1 0.1126 0.1130
2 0.2073 0.2094
3 0.3456 0.3470
4 0.4444 0.4476
5 0.5277 0.5296

Table 3: Ratios of unique queries with bursts identified by 𝜆-H-
WMA using different lengths of sliding window.

Window length 2 days 4 days 7 days 14 days 28 days
Ratio 44.3% 43.5% 43.6% 44.1% 52.9%

popularity, assigning flexible weights to previous observa-
tions according to the time interval is better than using
uniformweights. It is consistent with the findings observed in
temporal information retrieval that the more recent the data
is, the more reliable it is in predicting future trend [14, 22].
Thus, the weights of past observations are monotonically
increasing as the time interval shortens. That is, the recent
data contributes more than the remote one. Accordingly,
we conclude that introducing a decay function to the burst
detection step in our hybrid QAC model helps improve the
overall QAC performance.

5.4. Impact of Sliding Window Length. In order to answer
(RQ4), we first vary the length of sliding window in burst
detection and then examine the impacts on QAC perfor-
mance. Following [1], we employ 5 different sliding windows
with a range of 2 to 28 days and report the ratios of queries
with bursts in Table 3.

We can see from Table 3 that the 𝜆-H-WMA model with
a 28-day sliding window identifies the largest amount of
queries with bursts. In contrast, when using a shorter sliding
window, for example, 4 or 7 days, it detects less bursty queries.
Clearly, the length of sliding window does affect the burst
detection based on a query’s past popularity.

Next, we examine the performance of 𝜆-H-WMA with
5 different sliding windows for prefixes consisting of 1–5
characters and report the absolute MRR scores in Figure 3.

As shown in Figure 3, in general, the 𝜆-H-WMA model
performs best under the setting of a 7-day sliding window
except the case that amarginal drop of 0.45% in terms ofMRR
is observed at #𝑝 = 1 when comparing to its performance
under the setting of a 4-day sliding window. It is also worth
noting that the 𝜆-H-WMA model with a 28-day sliding
window results in the lowestMRRvalues for all prefix lengths.
In detail, for #𝑝 = 3, 4, and 5, the 𝜆-H-WMA model with
a 7-day sliding window leads to an MRR increase of up to
1.4%, 1.7%, and 1.3% over the performance under the setting
of a 28-day slidingwindow, respectively.This indicates that, as
the prefix becomes longer, 𝜆-H-WMA with a sliding window
of 7 days consistently performs better than that under other
settings.

2 days
4 days
7 days

14 days
28 days

2 3 4 51
#p

0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

Figure 3:MRR values of 𝜆-H-WMAwith sliding window lengths of
2 to 28 days and query prefix 𝑝 lengths of 1–5 characters.

Interestingly, as shown in Table 3, the 𝜆-H-WMA model
with a 28-day sliding window leads to the largest number
of bursty queries; however, the corresponding QAC perfor-
mance of 𝜆-H-WMA is not as efficient as that with other
settings of sliding windows. In contrast, 𝜆-H-WMA achieves
the highest MRR score with a 7-day sliding window but it
detects less bursty queries. It could be explained by the fact
that the majority of query bursts in the AOL dataset are
short-term bursts and sliding windows of 14 or 28 days will
depress the short-term variations. However, too short sliding
windows, for example, 2 or 4 days, will exaggerate the short-
term fluctuations and introduce noise in burst detection.
Therefore, bursty queries can be efficiently identified under
the setting of a 7-day sliding window, which helps to improve
the QAC performance.

6. Conclusion

In this paper, we present a novel approach to address the
problem of query autocompletion (QAC). In detail, we
consider the periodicity and the burst trend to predict a
query’s future popularity for ranking query completions,
which is achieved by the Discrete Fourier Transform and
Weighted Moving Average, respectively. We combine these
two temporal patterns by proposing a hybrid QAC model.
Finally, we verify the effectiveness of our proposal on the
AOL query log, showing remarkable improvements in terms
of Mean Reciprocal Rank over typical QAC baselines.

As future work, investigating other temporal patterns of
query popularity may improve the quality of query comple-
tions. In addition, user specific information such as gender,
age, and click-through data can be incorporated into the
current hybrid QAC model to generate a personalized QAC
list to a specific user.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

8 Mathematical Problems in Engineering

Acknowledgments

This work is partially supported by the National Advanced
Research Project under no. 6141B08010101.

References

[1] S. Whiting and J. M. Jose, “Recent and robust query auto-
completion,” in Proceedings of the 23rd International Conference
onWorldWideWeb, pp. 971–981, Seoul, Republic of Korea, April
2014.

[2] Z. Bar-Yossef and N. Kraus, “Context-sensitive query auto-
completion,” in Proceedings of the 20th International Conference
onWorldWideWeb (WWW ’11), pp. 107–116, ACM, Hyderabad,
India, April 2011.

[3] A. Strizhevskaya, A. Baytin, I. Galinskaya, and P. Serdyukov,
“Actualization of query suggestions using query logs,” in Pro-
ceedings of the 21st Annual Conference on World Wide Web
(WWW ’12), pp. 611–612, Lyon, France, April 2012.

[4] M. Shokouhi and K. Radinsky, “Time-sensitive query auto-
completion,” in Proceedings of the 35th Annual International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 601–610, Portland, Ore, USA, August 2012.

[5] M. Shokouhi, “Learning to personalize query auto-completion,”
in Proceedings of the 36th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR
’13), pp. 103–112, Dublin, Ireland, August 2013.

[6] S. Bhatia, D. Majumdar, and P. Mitra, “Query suggestions
in the absence of query logs,” in Proceedings of the 34th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 795–804, Beijing,
China, July 2011.

[7] S. Chaudhuri and R. Kaushik, “Extending autocompletion to
tolerate errors,” in Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 707–718,
Providence, RI, USA, July 2009.

[8] B.-J. Hsu and G. Ottaviano, “Space-efficient data structures
for top-𝜅 completion,” in Proceedings of the 22nd International
Conference on World Wide Web, pp. 583–594, Rio de Janeiro,
Brazil, May 2013.

[9] X. Li and W. B. Croft, “Time-based language models,” in
Proceedings of the 12th ACM International Conference on Infor-
mation and Knowledge Management (CIKM ’03), pp. 469–475,
New Orleans, La, USA, November 2003.

[10] F. Diaz and R. Jones, “Using temporal profiles of queries for
precision prediction,” in Proceedings of the 27th Annual Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 18–24, Sheffield, UK, July 2004.

[11] A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais, “Under-
standing temporal query dynamics,” in Proceedings of the 4th
ACM International Conference onWeb Search and DataMining,
pp. 167–176, Hong Kong, February 2011.

[12] J. L. Elsas and S. T. Dumais, “Leveraging temporal dynamics
of document content in relevance ranking,” in Proceedings of
the 3rd ACM International Conference on Web Search and Data
Mining, pp. 1–10, New York, NY, USA, February 2010.

[13] K. Berberich, S. Bedathur, O. Alonso, and G. Weikum, “A
language modeling approach for temporal information needs,”
in Proceedings of the 32nd European Conference on Advances
in Information Retrieval, pp. 13–25, Milton Keynes, UK, March
2010.

[14] N. Kanhabua and K. Nørvåg, “Determining time of queries for
re-ranking search results,” in Proceedings of the 14th European
Conference on Research and Advanced Technology for Digital
Libraries (ECDL ’10), pp. 261–272, Glasgow, UK, 2010.

[15] R. Campos, G. Dias, A. M. Jorge, and C. Nunes, “Enriching
temporal query understanding through date identification: how
to tag implicit temporal queries?” in Proceedings of the 2nd
Temporal Web Analytics Workshop (TempWeb ’12), pp. 41–48,
Lyon, France, April 2012.

[16] M. Shokouhi, “Detecting seasonal queries by time-series anal-
ysis,” in Proceedings of the 34th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pp. 1171–1172, Beijing, China, July 2011.

[17] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos, “Iden-
tifying similarities, periodicities and bursts for online search
queries,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD ’04), pp. 131–142,
Paris, France, June 2004.

[18] Z. Li and J. Han, Data Mining and Knowledge Discovery for
Big Data: Methodologies, Challenge and Opportunities, Springer,
Berlin, Germany, 2014.

[19] M. Vlachos, P. Yu, andV. Castelli, “On periodicity detection and
structural periodic similarity,” in Proceedings of the 5th SIAM
International Conference on Data Mining (SDM ’05), pp. 449–
460, Newport Beach, Calif, USA, April 2005.

[20] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal
Processing, Prentice Hall Press, Upper Saddle River, NJ, USA,
3rd edition, 2009.

[21] M.-H. Peetz, E. Meij, and M. de Rijke, “Using temporal bursts
for query modeling,” Information Retrieval, vol. 17, no. 1, pp. 74–
108, 2014.

[22] P. N. Bennett, R. W.White, W. Chu et al., “Modeling the impact
of short- and long-term behavior on search personalization,” in
Proceedings of the 35th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
pp. 185–194, Portland, Ore, USA, August 2012.

[23] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,”
in Proceedings of the 1st International Conference on Scalable
Information Systems, Hong Kong, June 2006.

[24] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A.
Bouchachia, “A survey on concept drift adaptation,” ACM
Computing Surveys, vol. 46, no. 4, article 44, 2014.

Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

