152 research outputs found

    Use of Ultrasmall Superparamagnetic Iron Oxide Enhanced Susceptibility Weighted Imaging and Mean Vessel Density Imaging to Monitor Antiangiogenic Effects of Sorafenib on Experimental Hepatocellular Carcinoma

    Get PDF
    We investigated effectiveness of ultrasmall superparamagnetic iron oxide enhanced susceptibility weighted imaging (USPIO-enhanced SWI) and mean vessel density imaging (Q) in monitoring antiangiogenic effects of Sorafenib on orthotopic hepatocellular carcinoma (HCC). Thirty-five HCC xenografts were established. USPIO-enhanced SWI and Q were performed on a 1.5 T MR scanner at baseline, 7, 14, and 21 days after Sorafenib treatment. Intratumoral susceptibility signal intensity (ITSS) and Q were serially measured and compared between the treated (n = 15) and control groups (n = 15). Both ITSS and Q were significantly lower in the treated group at each time point (P < 0.05). Measurements in the treated group showed that ITSS persisted at 7 days (P = 0.669) and increased at 14 and 21 days (P < 0.05), while Q significantly declined at 7 days (P = 0.028) and gradually increased at 14 and 21 days. In the treated group, significant correlation was found between Q and histologic microvessel density (MVD) (r = 0.753, P < 0.001), and ITSS correlated well with MVD (r = 0.742, P = 0.002) after excluding the data from baseline. This study demonstrated that USPIO-enhanced SWI and Q could provide novel biomarkers for evaluating antiangiogenic effects of Sorafenib on HCC

    Blind image quality assessment via adaptive graph attention

    Get PDF
    Recent advancements in blind image quality assessment (BIQA) are primarily propelled by deep learning technologies. While leveraging transformers can effectively capture long-range dependencies and contextual details in images, the significance of local information in image quality assessment can be undervalued. To address this challenging problem, we propose a novel feature enhancement framework tailored for BIQA. Specifically, we devise an Adaptive Graph Attention (AGA) module to simultaneously augment both local and contextual information. It not only refines the post-transformer features into an adaptive graph, facilitating local information enhancement, but also exploits interactions amongst diverse feature channels. The proposed technique can better reduce redundant information introduced during feature updates compared to traditional convolution layers, streamlining the self-updating process for feature maps. Experimental results show that our proposed model outperforms state-of-the-art BIQA models in predicting the perceived quality of images. The code of the model will be made publicly available

    Abundant and Rare Microbial Biospheres Respond Differently to Environmental and Spatial Factors in Tibetan Hot Springs

    Get PDF
    Little is known about the distribution and ecological functions of abundant, intermediate, and rare biospheres and their correlations with environmental factors in hot springs. Here, we explored the microbial community composition of total, abundant, intermediate, and rare biospheres in 66 Tibetan hot springs (pairwise geographic distance 0–610 km, temperature 32–86°C, pH 3.0–9.5, and salinity 0.13–1.32 g/L) with the use of Illumina MiSeq high-throughput sequencing. The results showed that the abundant sub-communities were mainly composed of Chloroflexi, Proteobacteria, Deinococcus-Thermus, Aquificae, Bacteroidetes, and Firmicutes. In contrast, the rare sub-communities mainly consisted of most newly proposed or candidate phyla of Dictyoglomi, Hydrogenedentes, Atribacteria, Hadesarchaea, Aminicenantes, Microgenomates, Calescamantes, Omnitrophica, Altiarchaeales, and Chlamydiae. However, the abundant and rare sub-communities shared some common phyla (e.g., Crenarchaeota, Bathyarchaeota, and Chlorobi), which were composed of different OTUs. The abundant, intermediate, and rare sub-communities were mainly influenced by different environmental variables, which could be ascribed to the fact that they may have different growth and activity and thus respond differently to these variables. Spatial factors showed more contribution to shaping of the intermediate and rare communities than to abundant sub-community, suggesting that the abundant taxa were more easily dispersed than their rare counterparts among hot springs. Microbial ecological function prediction revealed that the abundant and rare sub-communities responded differently to the measured environmental factors, suggesting they may occupy different ecological niches in hot springs. The rare sub-communities may play more important roles in organic matter degradation than their abundant counterparts in hot springs. Collectively, this study provides a better understanding on the microbial community structure and potential ecological functions of the abundant and rare biospheres in hot spring ecosystems. The identified rare taxa provide new opportunities of ecological, taxonomic and genomic discoveries in Tibetan hot springs

    A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing

    Get PDF
    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world

    Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: Overview and prospects

    Get PDF
    Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era
    • …
    corecore