231 research outputs found

    Traumatic brain injury and abnormal moral judgment

    Get PDF
    This article explains the underlying mechanism of utilitarian decisions in Traumatic Brain Injury (TBI) patients when pondering trolley-type moral dilemmas. In the first section of the literature review, definitions of TBI, utilitarianism and abnormal moral judgment have been provided. The ventromedial prefrontal cortex (vmPFC) has been identified to be undoubtedly prominent based on a discussion of the previous contradictory evidences about the brain areas involved in causing abnormal moral judgment. Subsequently, the function of vmPFC as an emotional integration station is introduced, substantiated by functional magnetic resonance imaging studies and the dual-system theory of moral decision-making. The inability or the diminished ability to feel morally-related emotions following TBI has also been considered a causal factor of endorsement to the act of harming someone directly. Finally, the author advises a few future directions to fill the gap within current knowledge and points out the limitations of thought experiments. Overall, the paper highlighted that the atypical response pattern of moral judgment in TBI patients is attributed to the failure to generate appropriate emotions in the face of moral stimuli

    Label-free non-invasive subwavelength-resolution imaging using yeast cells as biological lenses

    Get PDF
    There is a growing interest to use live cells to replace the widely used non-biological microsphere lenses. In this work, we demonstrate the use of yeast cells for such imaging purpose. Using fiber-based optical trapping technique, we trap a chain of three yeast cells and bring them to the vicinity of imaging objects. These yeast cells work as near-field magnifying lenses and simultaneously pick up the sub-diffraction information of the nanoscale objects under each cell and project them into the far-field. The experimental results demonstrated that Blu-ray disc of 100 nm feature can be clearly resolved in a parallel manner by each cell

    Rate-Splitting Multiple Access for Uplink Massive MIMO With Electromagnetic Exposure Constraints

    Full text link
    Over the past few years, the prevalence of wireless devices has become one of the essential sources of electromagnetic (EM) radiation to the public. Facing with the swift development of wireless communications, people are skeptical about the risks of long-term exposure to EM radiation. As EM exposure is required to be restricted at user terminals, it is inefficient to blindly decrease the transmit power, which leads to limited spectral efficiency and energy efficiency (EE). Recently, rate-splitting multiple access (RSMA) has been proposed as an effective way to provide higher wireless transmission performance, which is a promising technology for future wireless communications. To this end, we propose using RSMA to increase the EE of massive MIMO uplink while limiting the EM exposure of users. In particularly, we investigate the optimization of the transmit covariance matrices and decoding order using statistical channel state information (CSI). The problem is formulated as non-convex mixed integer program, which is in general difficult to handle. We first propose a modified water-filling scheme to obtain the transmit covariance matrices with fixed decoding order. Then, a greedy approach is proposed to obtain the decoding permutation. Numerical results verify the effectiveness of the proposed EM exposure-aware EE maximization scheme for uplink RSMA.Comment: to appear in IEEE Journal on Selected Areas in Communication

    Circular RNA circNOL10 Inhibits Lung Cancer Development by Promoting SCLM1-Mediated Transcriptional Regulation of the Humanin Polypeptide Family

    Get PDF
    circNOL10 is a circular RNA expressed at low levels in lung cancer, though its functions in lung cancer remain unknown. Here, the function and molecular mechanism of circNOL10 in lung cancer development are investigated using in vitro and in vivo studies, and it is shown that circNOL10 significantly inhibits the development of lung cancer and that circNOL10 expression is co‐regulated by methylation of its parental gene Pre‐NOL10 and by splicing factor epithelial splicing regulatory protein 1 (ESRP1). circNOL10 promotes the expression of transcription factor sex comb on midleg‐like 1 (SCML1) by inhibiting transcription factor ubiquitination and thus also affects regulation of the humanin (HN) polypeptide family by SCML1. circNOL10 also affects mitochondrial function through regulating the humanin polypeptide family and affecting multiple signaling pathways, ultimately inhibiting cell proliferation and cell cycle progression, and promoting the apoptosis of lung cancer cells, thereby inhibiting lung cancer development. This study investigates the functions and molecular mechanisms of circNOL10 in the development of lung cancer and reveals its involvement in the transcriptional regulation of the HN polypeptide family by SCML1. The results also demonstrate the inhibitory effect of HN on lung cancer cells growth. These findings may identify novel targets for the molecular therapy of lung cancer

    Individual participant data meta-analysis of LR-5 in LI-RADS version 2018 versus revised LI-RADS for hepatocellular carcinoma diagnosis

    Get PDF
    Background A simplification of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 (v2018), revised LI-RADS (rLI-RADS), has been proposed for imaging-based diagnosis of hepatocellular carcinoma (HCC). Single-site data suggest that rLI-RADS category 5 (rLR-5) improves sensitivity while maintaining positive predictive value (PPV) of the LI-RADS v2018 category 5 (LR-5), which indicates definite HCC. Purpose To compare the diagnostic performance of LI-RADS v2018 and rLI-RADS in a multicenter data set of patients at risk for HCC by performing an individual patient data meta-analysis. Materials and Methods Multiple databases were searched for studies published from January 2014 to January 2022 that evaluated the diagnostic performance of any version of LI-RADS at CT or MRI for diagnosing HCC. An individual patient data meta-analysis method was applied to observations from the identified studies. Quality Assessment of Diagnostic Accuracy Studies version 2 was applied to determine study risk of bias. Observations were categorized according to major features and either LI-RADS v2018 or rLI-RADS assignments. Diagnostic accuracies of category 5 for each system were calculated using generalized linear mixed models and compared using the likelihood ratio test for sensitivity and the Wald test for PPV. Results Twenty-four studies, including 3840 patients and 4727 observations, were analyzed. The median observation size was 19 mm (IQR, 11–30 mm). rLR-5 showed higher sensitivity compared with LR-5 (70.6% [95% CI: 60.7, 78.9] vs 61.3% [95% CI: 45.9, 74.7]; P < .001), with similar PPV (90.7% vs 92.3%; P = .55). In studies with low risk of bias (n = 4; 1031 observations), rLR-5 also achieved a higher sensitivity than LR-5 (72.3% [95% CI: 63.9, 80.1] vs 66.9% [95% CI: 58.2, 74.5]; P = .02), with similar PPV (83.1% vs 88.7%; P = .47). Conclusion rLR-5 achieved a higher sensitivity for identifying HCC than LR-5 while maintaining a comparable PPV at 90% or more, matching the results presented in the original rLI-RADS study

    CT/MRI and CEUS LI-RADS Major Features Association with Hepatocellular Carcinoma: Individual Patient Data Meta-Analysis

    Full text link
    Background The Liver Imaging Reporting and Data System (LI-RADS) assigns a risk category for hepatocellular carcinoma (HCC) to imaging observations. Establishing the contributions of major features can inform the diagnostic algorithm. Purpose To perform a systematic review and individual patient data meta-analysis to establish the probability of HCC for each LI-RADS major feature using CT/MRI and contrast-enhanced US (CEUS) LI-RADS in patients at high risk for HCC. Materials and Methods Multiple databases (MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Scopus) were searched for studies from January 2014 to September 2019 that evaluated the accuracy of CT, MRI, and CEUS for HCC detection using LI-RADS (CT/MRI LI-RADS, versions 2014, 2017, and 2018; CEUS LI-RADS, versions 2016 and 2017). Data were centralized. Clustering was addressed at the study and patient levels using mixed models. Adjusted odds ratios (ORs) with 95% CIs were determined for each major feature using multivariable stepwise logistic regression. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) (PROSPERO protocol: CRD42020164486). Results A total of 32 studies were included, with 1170 CT observations, 3341 MRI observations, and 853 CEUS observations. At multivariable analysis of CT/MRI LI-RADS, all major features were associated with HCC, except threshold growth (OR, 1.6; 95% CI: 0.7, 3.6; P = .07). Nonperipheral washout (OR, 13.2; 95% CI: 9.0, 19.2; P = .01) and nonrim arterial phase hyperenhancement (APHE) (OR, 10.3; 95% CI: 6.7, 15.6; P = .01) had stronger associations with HCC than enhancing capsule (OR, 2.4; 95% CI: 1.7, 3.5; P = .03). On CEUS images, APHE (OR, 7.3; 95% CI: 4.6, 11.5; P = .01), late and mild washout (OR, 4.1; 95% CI: 2.6, 6.6; P = .01), and size of at least 20 mm (OR, 1.6; 95% CI: 1.04, 2.5; P = .04) were associated with HCC. Twenty-five studies (78%) had high risk of bias due to reporting ambiguity or study design flaws. Conclusion Most Liver Imaging Reporting and Data System major features had different independent associations with hepatocellular carcinoma; for CT/MRI, arterial phase hyperenhancement and washout had the strongest associations, whereas threshold growth had no association. © RSNA, 2021 Online supplemental material is available for this article
    corecore