56 research outputs found

    Seeing What You Miss: Vision-Language Pre-training with Semantic Completion Learning

    Full text link
    Cross-modal alignment is essential for vision-language pre-training (VLP) models to learn the correct corresponding information across different modalities. For this purpose, inspired by the success of masked language modeling (MLM) tasks in the NLP pre-training area, numerous masked modeling tasks have been proposed for VLP to further promote cross-modal interactions. The core idea of previous masked modeling tasks is to focus on reconstructing the masked tokens based on visible context for learning local-to-local alignment. However, most of them pay little attention to the global semantic features generated for the masked data, resulting in the limited cross-modal alignment ability of global representations. Therefore, in this paper, we propose a novel Semantic Completion Learning (SCL) task, complementary to existing masked modeling tasks, to facilitate global-to-local alignment. Specifically, the SCL task complements the missing semantics of masked data by capturing the corresponding information from the other modality, promoting learning more representative global features which have a great impact on the performance of downstream tasks. Moreover, we present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously. Experimental results show that our proposed method obtains state-of-the-art performance on various vision-language benchmarks, such as visual question answering, image-text retrieval, and video-text retrieval

    Blood-coated sensor for high-throughput ptychographic cytometry on a Blu-ray disc

    Full text link
    Blu-ray drive is an engineering masterpiece that integrates disc rotation, pickup head translation, and three lasers in a compact and portable format. Here we integrate a blood-coated image sensor with a modified Blu-ray drive for high-throughput cytometric analysis of various bio-specimens. In this device, samples are mounted on the rotating Blu-ray disc and illuminated by the built-in lasers from the pickup head. The resulting coherent diffraction patterns are then recorded by the blood-coated image sensor. The rich spatial features of the blood-cell monolayer help down-modulate the object information for sensor detection, thus forming a high-resolution computational bio-lens with a theoretically unlimited field of view. With the acquired data, we develop a lensless coherent diffraction imaging modality termed rotational ptychography for image reconstruction. We show that our device can resolve the 435 nm linewidth on the resolution target and has a field of view only limited by the size of the Blu-ray disc. To demonstrate its applications, we perform high-throughput urinalysis by locating disease-related calcium oxalate crystals over the entire microscope slide. We also quantify different types of cells on a blood smear with an acquisition speed of ~10,000 cells per second. For in vitro experiment, we monitor live bacterial cultures over the entire Petri dish with single-cell resolution. Using biological cells as a computational lens could enable new intriguing imaging devices for point-of-care diagnostics. Modifying a Blu-ray drive with the blood-coated sensor further allows the spread of high-throughput optical microscopy from well-equipped laboratories to citizen scientists worldwide

    GSK-3β regulates tumor growth and angiogenesis in human glioma cells.

    Get PDF
    BACKGROUND: Glioma accounts for the majority of primary malignant brain tumors in adults. METHODS: Glioma specimens and normal brain tissues were analyzed for the expression levels of GSK-3β and p-GSK-3β (Ser9) by tissue microarray analysis (TMA) and Western blotting. Glioma cells over-expressing GSK-3β were used to analyze biological functions both in vitro and in vivo. RESULTS: The levels of p-GSK-3β (Ser9), but not total GSK-3β, are significantly up-regulated in glioma tissues compared to normal tissues, and are significantly correlated with the glioma grades. Ectopic expression of GSK-3β decreased the phosphorylation levels of mTOR and p70S6K1; and inhibited β-catenin, HIF-1α and VEGF expression. Forced expression of GSK-3β in glioma cells significantly inhibited both tumor growth and angiogenesis in vivo. CONCLUSIONS: These results reveal that GSK-3β regulates mTOR/p70S6K1 signaling pathway and inhibits glioma progression in vivo; its inactivation via p-GSK-3β (Ser9) is associated with glioma development, which is new mechanism that may be helpful in developing GSK-3β-based treatment of glioma in the future

    Lensless polarimetric coded ptychography (pol-CP) for high-resolution, high-throughput birefringence imaging on a chip

    Full text link
    Polarimetric imaging provides valuable insights into the polarization state of light interacting with a sample. It can infer crucial birefringence properties of bio-specimens without using any labels, thereby facilitating the diagnosis of diseases such as cancer and osteoarthritis. In this study, we introduce a novel polarimetric coded ptychography (pol-CP) approach that enables high-resolution, high-throughput birefringence imaging on a chip. Our platform deviates from traditional lens-based polarization systems by employing an integrated polarimetric coded sensor for lensless diffraction data acquisition. Utilizing Jones calculus, we quantitatively determine the birefringence retardance and orientation information of bio-specimens from four recovered intensity images. Our portable pol-CP prototype can resolve the 435-nm linewidth on the resolution target and the imaging field of view for a single acquisition is limited only by the detector size of 41 mm^2. The prototype allows for the acquisition of gigapixel birefringence images with a 180-mm^2 field of view in ~3.5 minutes, achieving an imaging throughput comparable to that of a conventional whole slide scanner. To demonstrate its biomedical applications, we perform high-throughput imaging of malaria-infected blood smears, locating parasites using birefringence contrast. We also generate birefringence maps of label-free thyroid smears to identify thyroid follicles. Notably, the recovered birefringence maps emphasize the same regions as autofluorescence images, indicating the potential for rapid on-site evaluation of label-free biopsies. The reported approach offers a portable, turnkey solution for high-resolution, high-throughput polarimetric analysis without using lenses, with potential applications in disease diagnosis, sample screening, and label-free chemical imaging
    • …
    corecore